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Motivating Example

•Nereus problem: Naval anti-air warfare problem, depicted below.

•Objectif : Find a resource assignment strategy, that avoids both:

1. The ship being hit by incoming enemy missiles;

2. The bounded and shared resources being over-utilized.

•Main difficulties posed by Nereus:

1. An arbitrary number of enemy missiles may occur over periods;

2. The Lack of the joint-model of rewards and transitions of the team of enemy missiles;

3. The large number of resources to allocate to the team of enemy missiles;

4. The availability of resources positive and negative interactions;

5. The resource constraints including tight response-time constraints.

Figure 1: Naval Environment for Resource Engagement in Unpredictable Situations.

Cyclic Progressive Reasoning Unit (C-PRU)

•Model of Task Structure:

1. Each enemy missile is formalized as a structured task;

2. Each task describes the ship engagement procedure as illustrated below.
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Figure 2: Cyclic Progressive Reasoning Unit of a missile engagement procedure.

•More Formally, a C-PRU Ci : 〈Si, Ai, Ti, Ri, Ki, U, ϕ, λ〉 consists of:

1. A single agent Markov decision problem: 〈Si, Ai, Ti, Ri, λ〉;

2. A resource management problem: 〈Ki, U, ϕ〉:

– Ki is the set of resource types, such as chaff cloud or jammer as depicted above.

– ϕ(ai, Ωi) ∈ [0, 1] is the discount factor of executing action ai, when actions Ωi are
operating. Negative and positive interactions are illustrating in Figure above.

– U = [uk]k available amount of resources per type k ∈ Ki.

•Remark: C-PRU extends the progressive reasoning unit model first introduced by
[Mouaddib & al.], for solving infinite-horizon MDPs handling structured tasks.

Two Phases Approximate Strategy

• Inconvenient: A periodic Multi-agent C-PRUs problem is Pspace-Hard.

• Solution: Computing an approximate solution that sacrifices optimality for computa-
tional feasibility.

1. Offline phase: Compute heuristic estimates of individual value function of each task:

qi(siai|Ωi) = Ri(siai|Ωi) + λ
∑

s′i
Ti(siais

′
i)V

⋆
i (s′i|∅)

vi(si|Ωi) = maxai
qi(siai|Ωi)

(1)

where V ⋆(s′i|∅) is an optimistic value when ignoring resource interactions, and

Ri(siai|Ωi) =
∑

s′i
ϕ(aiΩi)Ti(siais

′
i)Ri(siais

′
i) (2)

2. Online phase: Recover an approximate estimate of the exact value function of the
team of enemy missile tasks.

Q̄(sa|Ω) =

|M |∑

k=1

ζk

∏

i≤k

qi(siai|Ωi) (3)

where ζk stands for the weight associated with task Mk, M is the set of all task Mk.
The objective consists in finding a joint-action ā⋆ at each time period such that:

ā⋆ = arg maxa∈A Q̄(sa|Ω) (4)

•Challenges: To find a near-optimal solution through a search space bounded by O(| ⊗i

Ai|
M ) with respect to the response-time constraints: Each iteration improves the current

complete solution.

Real-Time Dynamic A⋆ (RTDA⋆)

• Search Space: Tree search structure Tree = (N, E)

– N = {oj
i}i,j denotes the set of nodes o

j
i = 〈si, Ω

j
i , Q

j
i 〉 describing agent Mi characteris-

tics, where Q
j
i states the heuristic estimate of the current best joint action 〈ai · · · a|M |〉:

Q
j
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∏
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qk(skak|Ω
j
k
) = qi(siai|Ω

j
i )(ζi + Q

j′
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•RTDA⋆ Algorithm:

Require: agent states {sj}
|M |
j=1 ordered following edf.

Ensure: tree.
1: tree← EmptyTree

2: open← EmptyStack

3: SearchSuccessors(o0
1).

4: while open 6= EmptyStack do

5: 〈oj
i , a

j′

i , o
j′

i+1〉 ← open.pop().

6: if o
j+1
i′ is not yet visited then

7: add 〈oj
i , a

j′

i , o
j′

i+1〉 to tree.

8: SearchSuccessors(o
j′

i+1).
9: else

10: update Q
j
i as mentioned eq. (5).

11: end if

12: end while

3 Agents Toy Example

•Branch-And-Bound Algorithm: RTDA⋆ uses an upper Ub and lower Lb bounds to
prune dominated nodes:

Ub(a
j
i ) = qi[ζi + vi+1(ζi+1 + ζ(|M | − i− 1))]

Lb(o
j
i ) = Q

j
i

(6)

where qi = qi(siai|Ω
j
i ), vi = vi(si|Ω

j
i ) and ζ = maxi ζi. As an example, action a0

2 estimate

value for ζi = 1
3 (∀i), is given by: Lb = Q0

2 = .34× (1
3 + .44) = .2629. The upper bound

of selecting action a1
2 (resp. a2

2), is given by:

Ub(a
1
2) = .23× (1

3 + .44× (1
3 + 1

3(3− 2− 1))) = .1104

Thus it is not necessary to expand either node o1
3 or o2

3 because of Ub(a
1
2) < Lb.

•Anytime Algorithm: RTDA⋆ selects in a greedy fashion its joint-actions based on
pre-compiled solutions.
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Figure 3: Each edge is labeled with an admissible action and its pre-compiled value. The light-green nodes mark the partially or completely explored node.

Experimental Results and Conclusion

•Experiments: Comparison of rtda⋆ and optimal mmdp solutions.

•Results: RTDA⋆ is able to provide near-optimal solutions, with respect to bounded and
shared resource, and under a large number of agents.

•Future work directions:

1. Extend RTDA⋆ in order to find optimal solutions;

2. Adapt RTDA⋆ for solving Dec-(PO)MDPs handling a large number of agents.


