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Abstract— One of the major goals for mobile robots is to be
able to traverse any kind of terrains. A possible way to achieve
this goal is by the use of legged robots, as they have increased
mobility. However, this would require them to be able to modify
their gaits, based on the identification of the terrain that they
are currently traversing. In this paper, we introduce a number
of novel methods to address this issue of autonomous terrain
classification and clustering, based on tactile data collected with
a walking robot. The proposed learning methods are based
on the Pitman-Yor process mixture of Gaussians, a Bayesian
nonparametric prior, well-suited for density estimation. This
model is initially used to learn the non-Gaussian distribution of
the features produced from proprioceptive (force/torque) signals
from the legs, registered during the interaction of one robot
foot with a terrain. Then, we exploit its capacity on clustering
and discovering structures in the data to identify terrains in
the feature space. Experiments were conducted on a six-legged
robot, thus demonstrating the applicability of the Pitman-
Yor process mixture of Gaussians for terrain identification. In
particular, we obtained a classification success rate of 82% and
51% accuracy, with our supervised learning and unsupervised
learning approach respectively.

I. INTRODUCTION

The general problem of estimating the physical properties
of terrains, called terramechanics, is an important one from
a point of view of mobile robotics, as it has a strong
impact on locomotion performance and strategies. Indeed,
knowledge about the terrain type and its properties such
as stiffness, roughness or friction coefficient, would allow
a mobile robot to adapt its control algorithm to changing
traction conditions [1]. Thus, being able to identify the terrain
type located in front of a robot would be a way to increase
the effectiveness of navigation, so that a mobile platform can
go efficiently through a specified area.

Of all possible terrain properties, this paper focuses on
identifying the material type of terrains. This key problem
of terrain identification in mobile robotics has been studied
for at least 30 years. For instance, a theoretical background
for revealing material properties through interactions with
objects was described in [2] in the late 80’s. Subsequent
experimental work was presented in [3], where the authors
used a robotic leg in their experiments.

Most approaches found in the literature use the following
steps to identify terrains: i) a probe (wheel or leg of the
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robot) physically interacts with the terrain; ii) acceleration,
force or torque signals are recorded; iii) signal dimensionality
reduction is performed through feature extraction; iv) super-
vised learning is applied, often in the form of discriminative
probabilistic models. The last step is more demanding, as it
requires a human to label the training data set. To alleviate
this problem of hand-labelling, more and more attention
is nowadays paid in the machine learning community to
unsupervised learning algorithms, which allows to perform a
task with limited human intervention. Unsupervised learning
is slowly proliferating in the robotics community [4], [5],
[6], but its influence is still limited. Additionally, generative
models are increasingly considered given their powerfulness,
as they are capable of predicting data from their joint proba-
bility distribution [7], [8], [9], [10], [11]. This is in opposition
to conditional probability from discriminative models.

In this paper, we present solutions to both the terrain
classification (supervised) and terrain clustering (unsuper-
vised) tasks. To solve these two learning problems, we adopt
a Bayesian nonparametric approach based on the Pitman-
Yor process mixture of Gaussians (PYPMoG), which is a
prior distribution on infinite mixture of Gaussians. To this
end, we first discuss in Section II previous work on terrain
identification and learning methods. Section III provides
the details related to the robot and the data acquisition.
Thereafter, the PYPMoG is introduced in Section IV with
the aim of conveying the general intuition behind infinite
mixture modeling. Experiments with Messor, our walking
robot, are presented in Section V. We finally discuss the
results and conclude in Section VI and VII respectively.

II. RELATED WORK
A. Terrain identification

Tactile perception is a broad field within robotic research.
In this paper, we focus on terrain identification for mobile
robots, which we consider as a sub-field of tactile sensing.
For wheeled robots, terrain sensing is often performed by
measuring the vibrations of the chassis of the vehicle with
an Inertial Measurements Unit (IMU), and then performing
classification on the acceleration signals [12], [13]. Similarly
using an IMU, but mounted on a simple tactile probe, the
authors of [14] were able to perform terrain classification,
with the advantage of by-passing the low-pass filtering effect
of the weight of the chassis and the suspension system. An
example of combining vibrations measurements and visual
information to terrain classification was described in [15].

For legged robots, several studies of terrain classification
algorithms using measurements from a single robotic leg



have been done. For instance, a vibration-based approach
applied to natural terrains is presented in [16]. In recent
work, pressure-sensitive skin mounted on a robot foot was
used as a sensing device for terrain classification. The use
of a pressure image provides, according to authors, results
which are independent of the dynamics [17]. Terrain iden-
tification for a RHex-like robot named Aqua is described
in [18], where they employed a combination of actuator
cues (motor currents) and accelerometer readings to perform
terrain identification. This research was further extended to
other terrain types [19], alongside a walking-speed adaptation
algorithm. Other researchers have looked at pushing the
number of sensed signals to the extreme (18) [20]. For
this work, results were obtained for 4 terrain types with 5
distinct gaits. There is also a previous work on this topic
done by some of our authors [1], although relying solely on
supervised learning techniques. Finally, some recent work
presented analytical model describing the difficult problem
of foot-ground interaction [21].

B. Probabilistic models

The aforementioned works in the previous subsection II-A
were all based on applying standard discriminative machine
learning techniques to perform the classification (voting
linear classifiers, neural networks, SVM, etc). In this work,
we advocate the use of fully probabilistic models, as they
have multiple advantages over discriminative models, as
related in subsection V-A and V-B. In [7], a generative
model allowed a system operating in an off-road autonomous
navigation scenario to infer the supporting ground surface,
even when it was hidden under dense vegetation. To this end,
they predict the missing data. Gaussian Processes, another
generative approach, were used for large scale mapping [8]
and planetary rover navigation [10]. It could also learn hu-
man behaviours and its relation to objects in the environment.
This way, given an object instance, it would “hallucinates”
humans employing it for better object categorisation [9].
The availability of these full models can also help us in
establishing a better confidence level of the decision made
by the robot. In some sense, it gives the autonomous system
the capability of knowing when it does not know [11].

From a machine learning perspective, Gaussian Mixture
Models (GMMs) are well-suited for density estimation tasks.
Under some assumptions, they can also be used to perform
clustering efficiently, enabling the unsupervised discovery of
terrain types. In the context of terrain identification, a robot
may interact with an unknown and potentially unbounded set
of surfaces. However, standard GMM learning methods such
as the Expectation-Maximization (EM) algorithm [22] re-
quire the exact number of clusters to be provide beforehand,
and are therefore unsuitable for our problem. To eliminate
this constraint, the EM algorithm can be combined with
Minimum Description Length (MDL) [23], resulting in an
agglomerative clustering strategy estimating the number of
components which best fit the data. While the EM algorithm
is good at learning a single maximum a posteriori (MAP)
model efficiently, it lacks estimating the posterior uncertainty,

Fig. 1. The Messor robot, used to collect the data sets in the experiments.

due to its optimization nature.
Another way to learn GMMs is to use a Bayesian frame-

work and rely on Markov chain Monte Carlo (MCMC)
to simulate the joint posterior distribution. When using an
appropriate prior distribution, the joint posterior distribution
provides information not only on the GMM’s parameters, but
also on the dimensionality of the GMM. For instance, in [24],
Zhang et al. used a uniform prior distribution on the bounded
number of components, along with a Dirichlet prior on the
mixture distribution. Then, they learned the dimensionality of
the model with a reversible-jump MCMC algorithm. In [25],
Rasmussen derived a prior as the limiting case of a finite
prior on GMMs. The resulting Bayesian nonparametric prior
is in fact a Dirichlet process on infinite dimensional GMMs
capable of learning a finite number of active components in
infinite mixture models.

The extension of GMMs with nonparametric learning
techniques has recently gained popularity for robotic ap-
plications. One of such approach, where the model of the
manipulator is learned from raw RGB data, is presented
in [5]. An application, which is closer to our work, is
described in [4]. The foothold selection using clustering
methods and clustering validation techniques for estimating
the number of classes is investigated. In our earlier work
the unsupervised learning of surface types in the highly
controlled environment was performed [6].

C. Contributions

The main contribution of our work is on the applica-
tion of the Pitman-Yor process mixture of Gaussians to
autonomously learn terrain types in the form of clusters. The
advantage of such unsupervised learning is allowing the robot
to freely navigate its environment and self-improve over time.

Our second contribution is a supervised learning method
based on learning the non-Gaussian features distribution as-
sociated with individual terrain types. This methods achieves
state-of-the-art performances and has the advantage of being
a probabilistic generative model.

III. MATERIALS

A. Walking Robot

The Messor robot, shown in Fig. 1, is a six-legged machine
which weighs approximately 4.3 kg, depending on the sensor
payload mounted on its back. The stretched leg of the



robot has a length of 0.445 m. Starting from the trunk, the
segments have the following dimensions: 0.055 m, 0.16 m
and 0.23 m. The distance between mounting points of hind
and fore leg is equal to 0.36 m, and between middle-right
and middle-left leg is equal to 0.26 m. The legs of the robot
are powered using Hitec HSR-5990TG robotic servo-motors.
A full description of the robot can be found in [26].

The robot is equipped with a rich variety of sensors: video
camera, depth camera, IMU and a Force/Torque (F/T) sensor.
For the research described in this paper, the latter is the
most important measuring device. The F/T sensor mounted
at the tip of the robotic leg is the ATI Mini-45 (calibrated by
the manufacturer). In the experiments the robot was walking
straight with the average speed V = 2 cm/s, using wave
gait. The measurements were acquired for static and dynamic
states with sensor sampling frequency set to 200 Hz. The data
consists of 3 force vector components (Fx, Fy, Fz) and 3
torque vector components (Tx, Ty, Tz).

Fig. 2 shows, for two sample terrains, the force and torque
signals registered during the initial 5 seconds of walking.
In a) and b), we have a concrete floor and c) and d) is
a sand surface. As it can be remarked, when the robot
walks on the concrete floor, the force signal Fz is regular
with constant amplitudes for each step. The sand terrain
signals exhibit different features. We can immediately see
that torque amplitudes are increasing over time in d), and
that some drift affects c) as the signals slowly move towards
negative values. We attribute this to the fact that the robot
had problems pulling its feet out of the sandy ground.
Additionally, we observe a difference in the force signal
amplitude where c) is smaller than a), which is especially true
for Fz . We ascribe this disparity to the soft nature of sand as
opposed to the firmness of concrete. We also consider that
the torque signals of concrete and sand are notably different
as well. The previous observation that concrete and sand
can be distinguished based on their respective signals seems
reasonable. For this reason, we assume that it should extend
to multiple type of terrains.

Fig. 2. Force/Torque signals registered with the foot-mounted sensor. Sub-
figures are: a) forces from concrete floor; b) torques from concrete floor; c)
forces from sand; d) torques from sand. Each color denotes a signal axis:
x-axis (red), y-axis (green) and z-axis (blue).

We sampled data from a set of 12 terrains (shown in
Fig. 3), each having different mechanical properties. There

are four types of powdery materials of different granularity:
sand, grit, pebbles and rocks. Our data set contains two
types of rubber, with different bounciness. Additionally, the
set comprises PVC tiles, ceramic tiles, carpet tiles, artificial
grass, wooden boards and concrete floor.

Fig. 3. Terrain samples used in the experiments: a) sand; b) green rubber;
c) concrete floor; d) PVC tiles; e) ceramic tiles; f) carpet tiles; g) artificial
grass, h) grit; i) pebbles; j) black rubber; k) wooden boards and l) rocks.

IV. LEARNING INFINITE GAUSSIAN MIXTURES

In this section, we present a Bayesian nonparametric prior
on Gaussian mixtures based on the Pitman-Yor process, a
two-parameter generalization of the Dirichlet process [27].
The Pitman-Yor process has an extra parameter governing
its tail behavior, making it useful when modeling data with
either exponential or power-law tails [28].

A. Pitman-Yor Process Mixture Models

The Pitman-Yor process PY(d, α,G0) is a probability
distribution over infinite dimensional discrete probability
distributions. It is parametrized by a discount parameter
0 ≤ d < 1, a concentration parameter α > −d and a
base probability distribution G0 on the space where the
learning takes place. As the discount parameter increases,
the Pitman-Yor process produces discrete distributions with
heavier tails. The stick-breaking construction of Ishwaran
and James [29] is particularly useful to understand the
support of this process. First, a draw G from a Pitman-Yor
process has the following form:

G(·) =

∞∑
k=1

πkδθ∗k(·) (1)

where θ∗k ∼ G0 and δθ(·) denotes a unit mass located at
parameter θ. When the base distribution G0 is continuous,
equation (1) assigns positive probability to a countably
infinite subset of parameters, which results in a discrete
G. To make sure G is also a probability distribution, the



sequence (πk)∞k=1 must sum to 1. This constraint is enforced
by recursively breaking a unit-length stick as follow:

vk ∼ Beta(1− d, α+ kd)

πk = vk

k−1∏
j=1

(1− vj) for k = 1, . . . ,∞
(2)

where vk is the portion to cut from the remainder of the stick
and πk is the length of this portion. With (2), one can have
a better grasp of parameter d’s impact on distribution G.

At this point, it probably becomes much clearer how
Pitman-Yor processes can be applied to mixture modeling.
The actual definition of the Pitman-Yor process mixture
model (PYPMM) is the following:

G | d, α,G0 ∼ PY(d, α,G0)

θi | G ∼ G

xi | θi ∼ F (θi)

(3)

where F is the continuous probability density function of
your choice. When learning Gaussian mixtures, F is the
multivariate Gaussian density, θ contains both the mean
vector and covariance matrix and component weights π are
included within distribution G as shown in equation (1).
Notice that θi is the label of xi that all data points generated
by component k will share the same parameters θ∗k.

The explicit representation of random distribution G re-
quires truncation due to its infinite nature. On the other hand,
marginalizing out G allows us to avoid the truncation step
and makes more obvious both the clustering and discreteness
properties of Pitman-Yor processes. In that case, one can
directly draw a random sequence of labels from the following
conditional probability:

θi | θ1, . . . , θi−1 ∼
α+Kd

α+ i− 1
G0 +

K∑
k=1

nk − d
α+ i− 1

δθ∗k (4)

where nk is the number of times θ∗k is observed among
θ1, . . . , θi−1 and K is the total number unique labels so far.
Equation (4) comprises a discrete measure (right term) over
the K previously observed components, meaning there is a
positive probability for an existing θ∗k to be resampled. As
more observations become available, the discrete measure
acquires more mass and the novelty probability (left term)
decreases accordingly. Thus, it results in a suitable rich-gets-
richer clustering behavior.

There exists multiple methods to perform posterior infer-
ence with PYPMMs. For instance, equation (4) gives rise to
a Gibbs sampler on cluster membership while equation (1)
can serve the same purpose. However, for the sake of brevity,
we refer interested readers to three key references for details
on inference methods [29], [30], [31].

B. Pitman-Yor Process Mixture of Gaussians

In this section, we complete the PYPMM with the neces-
sary specifications leading to the Pitman-Yor process mixture
of Gaussians (PYPMoG) which is used to learn infinite
GMMs in our experiments. To get to a fully probabilistic

model we still have to specify hyperpriors on the hyper-
parameters, define density function F and determine base
distribution G0.

For the probability density function F , we use the follow-
ing multivariate Gaussian representation:

xi | θi ∼ N (µi, S
−1
i ) (5)

where µ is the mean and S is the precision matrix. Again,
if xi belongs to the kth cluster, then θi = θ∗k.

The base distribution G0 is a prior indicating the kind
of Gaussians we are likely to get as components. Inspired
from the conditionally conjugate model proposed in [32],
we define distribution G0 on θ as:

µk ∼ N (0, I) (6)

Sk | β,Σ ∼W(β, (βΣ)−1) (7)

where W denotes the Wishart distribution with β degrees of
freedom and scale matrix (βΣ)−1. When assuming properly
scaled training data with zero mean and unit covariance,
(6) is a reasonable prior as it reflects the dispersion of the
components center in the x-space. However, we have no
clue regarding the shape of the components. Equation (7)
is a distribution over the precision matrices where Σ is the
expected covariance matrix and β acts on its variance.

For robustness, we adopt a hierarchical structure and
specify vague hyperpriors on hyperparameters β and Σ,
meaning we are learning G0. The following prior distribution
reflects our uncertainty concerning the unknown distribution
(7) over cluster covariances:

Σ ∼W(D,
I

D
), (

1

β −D + 1
) ∼ G(1,

1

D
) (8)

where D is the number of dimensions of x. Notice that
this prior makes it increasingly harder to expect smaller and
smaller Gaussians during the inference, thus favoring larger
covariance for precision matrices S.

Not forgetting, we also specify the following prior distri-
butions on α and d.

α−1 ∼ G(1/2, 1/2), d ∼ U(0, 1) (9)

corresponding to an inverse-gamma distribution for α and
a uniform distribution for d. That finally completes the
hyperprior on PY(d, α,G0) that we used to perform density
estimation and clustering in the experiments.

V. EXPERIMENTS

The aim of our experiments is to learn generative models
of the terrain features and use them to make various pre-
dictions. We consider both the classification problem and
clustering problem, and evaluate the PYPMoG performances
on these tasks.

In section III, we described our walking robot, its sensing
capabilities and provided a list of the 12 terrains to learn.
We gathered a number of foot touch-down samples using
the F/T sensor (3 force and 3 torque signals) on each terrain,
ranging from 36 to 85 traversals per terrain, for a total of



652 6-dimensional time series. We consequently have a non-
uniform representation of the terrains in our data, making
it more challenging than if we had a balanced number of
samples per terrain. Next, we extract features from time
series. The selected features, taken from [14] (and them-
selves adapted from [33]) are common statistics including
i) variance, ii) skewness, iii) kurtosis, iv) fifth moment, v)
sum of variation over time, vi) number of times 20 uniform
separations are crossed, which is equivalent to discretizing
the signal and counting the number of state transitions, and
vii) sum of higher half of the amplitude spectrum, which is
the area under the FFT curve from 200 Hz to 400 Hz. To
further reduce the dimensionality, we thereafter performed a
principal component analysis (PCA) on the 42-dimensional
feature data, lowering the number of dimensions to 6 (95%
of the variance). This last transformation helps estimating
Gaussian components with smaller amounts of data, which
in turns should increase the accuracy of the mixture model.

The PYPMoG learning is done by simulating its posterior
distribution over infinite mixture of Gaussians. To do so,
we rely on Markov chain Monte-Carlo (MCMC) methods
combining Gibbs sampling and Metropolis-Hasting steps.
When a unique model is required, we simply use the maxi-
mum a posteriori (MAP) estimate of a Markov chain without
involving any form of optimization.

A. Terrain classification with the PYPMoG

In a context where the terrain labels are available, we can
adopt a supervised learning approach to tackle our problem.
Thus, we used the PYPMoG for training multiple models
in a per-terrain fashion. Such approach exploits the density
estimation capacity of the infinite GMM by actually learning
p(x|y), which is the conditional joint probability of the
features x for a specific terrain y. We assume a uniform
distribution on p(y) to obtain a fully probabilistic model
p(x, y), but this one could have been learned from the terrain
frequencies with a Dirichlet prior.

For this experiment, we adopted a 7-fold cross-validation
technique for performance assessment. Each fold was divided
into a test set containing 5 samples per terrain and a training
set having all the remaining data, resulting in 592 training
examples and 60 testing examples per fold. Using the training
data along with their labels, we trained 12 independent
PYPMoG models, i.e. one per terrain. The learning procedure
was carried out by simulating the posterior for 50k iterations
and the MAP model was kept for terrain prediction purpose.

Once we have an estimated probability density function
(PDF) associated with all surfaces, we proceed to the testing
phase. To classify a datum, we individually compute the
probability that this datum was generated from each terrain
PDF. This is an easy step, since all PDFs are simple Gaussian
mixtures. Finally, we select the most likely terrain as our
prediction. When a Dirichlet distribution is available on the
probability to observe a terrain p(y), then the maximum
likelihood would become a maximum a posteriori.

Overall, the cross-validation procedure required 420 pre-
dictions (7-fold × 60 test data). The confusion matrix of the

learned model is presented in Fig. 4 and Table I reports the
mean accuracy over the 7 folds. For comparison purpose, we
evaluated the k-nearest neighbors algorithm and Expectation-
Maximization + Minimum Description Length on the same
problem. For the k-nearest neighbors, the highest average
success rate was achieved with k = 5.
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Fig. 4. Confusion matrix of the maximum a posteriori PYPMoG.

TABLE I
AVERAGE TERRAIN CLASSIFICATION ACCURACY

PYPMoG EM+MDL k-NN
82.38% 82.86% 78.39%

The average number of Gaussians per terrain indicates
the amount of structure learned in the data. In the case of
PYPMoG, the model used 2.08 Gaussians per terrain on
average while EM+MDL used 1.40 Gaussians.

In Table I, we can see that EM+MDL and PYPMoG per-
formed equally well, even though PYPMoG found slightly
more structure than EM+MDL. This result might be ex-
plained by the small number of data per terrain, making
it harder to find good structure in the data. However, the
PYPMoG has the advantage to learn infinite GMMs via
posterior inference, providing a set of candidate models
instead of a unique optimized GMM. This set of posterior
GMMs can be used to estimate the uncertainty on predicted
labels and decisions can be taken accordingly.

B. Terrain clustering with the PYPMoG

As stated earlier, we are looking for an algorithm capable
of distinguishing different terrains with little human inter-
vention. In that context, labels are not available, but we still
have to find the proper groups related to terrains among the
data. Here, we use all 652 examples for training and ask the
PYPMoG to find clusters under the hypothesis that terrain
features are Gaussianly distributed.

For this first clustering experiment, we ran 20 independent
Markov chains of 50k iterations to simulate the posterior
on the PYPMoG (Fig. 5). After a burn-in period of 25k
iterations, we kept the remaining 25k models as posterior
samples for estimating the distribution over the number of
clusters and computing what we call the pairwise correct
classification metric. The later uses hidden labels to calculate



a dissimilarity measure with the true clustering as follow:
an error is made when two data points are assigned to
the same cluster and should not be, or when they are
in different clusters and should be in the same one. The
resulting clustering accuracy is then 1 minus the error ratio.
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Fig. 6 depicts the posterior distribution on pairwise cor-
rect classification, with an empirical mean of 92.01% and
standard-deviation of 0.72%. Regarding the number of terrain
types found by the PYPMoG, we obtained an empirical mean
of 34.79 and a standard-deviation of 4.41 for the posterior
distribution shown in Fig. 7.

The fact that our pairwise correct classification measures
2 types of errors makes it difficult to interpret the results.
We therefore designed a second clustering experiment to
measure the predictive performances of the PYPMoG. To
do so, we evaluate the scenario of a human manually
labeling the training data once the clustering is completed.
Then, predictions are made by computing the frequency of
every label in a cluster to obtain a probability vector over
potential terrains. This approach is similar to a majority vote.
However, we do not know what cluster the datum to label
belongs to. To solve this, we again measure the likelihood of
each cluster given the datum and normalize the likelihoods,
giving us a probability vector over clusters. Combining these
quantities, we obtain a prediction matrix of size (number of
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Fig. 7. Posterior distribution on identified terrains.

clusters)×(number of terrains), which we then sum along
one dimension to obtain the probability over terrain labels.

For this experiment, we used a leave-one-out cross-
validation technique. The PYPMoG learning is done by
running a 50k iterations Markov chain on the 651 remaining
unlabeled examples. After a burn-in of 25k iterations, we
predicted the label of the left-out datum at each iteration and
estimated the expected posterior accuracy by the empirical
mean. The results, presented in Table II, are based on 40
independent experiments using a single randomly selected
data (without replacement) for cross-validation, where the
expected posterior accuracy is averaged over the 40 runs.

TABLE II
LEAVE-ONE-OUT AVERAGED PREDICTION ACCURACY

PYPMoG EM+MDL EM(12) k-means(12)
51.22% 27.05% 37.66% 43.95%

According to Table II, the PYPMoG outperforms other
approaches with an appreciable margin. The EM learning
algorithm performs poorly when it relies on the MDL to de-
termine the number of cluster. The 2 other methods required
the true number of cluster to be supplied beforehand, and
even with the additional information, they were unable to
match the PYPMoG accuracy.

VI. DISCUSSION

The main focus of our work was the application of the
Pitman-Yor process mixture of Gaussians, which is a prob-
ability distribution over infinite Gaussian Mixture Models.
The word infinite is the most important here, as it points
out the fact the model really comprises infinitely many
components, but only a finite number of them are active.

We argue that in the real world, there really exists infinitely
many terrains, but not enough time to observe them all.
Bayesian nonparametric models share this common property
that the prior probability distribution changes as more data
becomes available. In other words, the prior depends on the
number of data, as opposed to the fixed classic Bayesian
prior. The impact on learning is that for small number of
observations, the prior is less inclined to add clusters. On



the other hand, with large number of observations, the prior
will force the introduction of new clusters.

Such behavior is desirable in the context of terrain clus-
tering. As an example, if a robot repeatedly walks on sand,
the prior will eventually encourage the splitting of the sand
cluster. This behavior may lead to the discovery of different
type of sand. As a results, Bayesian nonparametric priors are
well-suited for the task of terrain clustering, if such behavior
is desirable. In the opposite case, one could simply replace
the PYPMoG prior by a Bayesian prior on GMMs and use
the reversible-jump MCMC algorithm of [24].

VII. CONCLUSIONS

In this work, we presented two generic and novel learning
methods addressing the problem of autonomous terrain type
learning. Both methods are based on the Pitman-Yor process
mixture of Gaussians (PYPMoG), a Bayesian nonparametric
prior on infinite Gaussian mixtures.

The first method produced a classifier by training multiple
PYPMoGs, one for each terrain type. The approach aimed to
learn the generative process of the different terrain type and
use the learned probabilistic model to perform predictions.
One of the advantages of this method is its capacity of
modeling non-Gaussian distribution on the terrain features.
We then presented a second method using the PYPMoG for
its clustering capability. The main advantage of this approach
is the great flexibility provided by the infinite dimensional
model introduced through the use of a PYPMoG prior.

We demonstrated the applicability of our method through
experiments on real world data collected by a six-legged
robot, on 12 different terrain types. Our results showed
that our methods achieved state-of-the-art performances on
terrain classification, both in the supervised and unsupervised
cases. The latter, combined with the flexibility of employing
infinite mixture models, paves the way to true long-term
learning of terrains, over the lifetime of a robot.
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