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ABSTRACT
In this paper, we study a particular subclass of partially observable
models, called quasi-deterministic partially observable Markov de-
cision processes (QDET-POMDPs), characterized by deterministic
transitions and stochastic observations. While this framework does
not model the same general problems as POMDPs, it still captures a
number of interesting and challenging problems and have, in some
cases, interesting properties. By studying the observability avail-
able in this subclass, we suggest that QDET-POMDPs may fall many
steps in the complexity hierarchy. An extension of this framework
to the decentralized case also reveals a subclass of numerous prob-
lems that can be approximated in polynomial space.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed AI—Multiagent sys-
tems; G.3 [Mathematics of Computing]: Probability and statis-
tics—Markov processes

General Terms
Markov Models Design
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1. INTRODUCTIVE EXAMPLES
In recent years, many problems have been modeled as POMDPs [2]

and DET-POMDPs [3] and had been used for developing and evalu-
ating various algorithms for planning under uncertainty and partial
information. For space reasons, we present only two examples of
problems that may be modeled as a QDET-POMDP:
- Diagnosis: The aim of diagnosis is to identify one of them states
of a system (e.g. a patient) using n noisy binary tests. An instance
consists of a m× n stochastic matrix T where each Tij represents
the probability that test j is positive in the state i. The goal is to
find the sequence of tests that will identify almost surely the state
of the studied system [5].
- Robot Navigation: Consider an indoor robot in a m × n grid
that must navigate from an initial position to a goal position while
avoiding obstacles using only some noisy sensors on its position.
The robot’s moves are fairly deterministic but the observation of its
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current state is distorted by the noise on the sensors. The goal is to
find a strategy for guiding the robot to its destination. This problem
is easily extendable to several robots.

Let us now see the formal definition of the deterministic POMDP
and the proposed variants.

2. MODEL AND VARIANTS

2.1 Formal Models
Deterministic POMDPs were initially defined as follows [3]:

DEFINITION 1. A Deterministic POMDP (DET-POMDP) is a tu-
ple 〈S, A, Ω, T , O,R, γ, b0〉, where:
- S is a finite set of states s ∈ S;
- A is the finite set of actions a ∈ A of the agent;
- Ω is the finite set of observations z ∈ Ω of the agent and;-
O(z, a, s′) : Ω × A × S 7→ {0, 1} is the deterministic obser-
vation function indicating wether or not the agent gets observation
z when the world falls in state s′ after executing action a;
- T (s, a, s′) : S × A × S 7→ {0, 1} is the deterministic transition
function indicating which state s′ results from making a in s;
-R(s, a) : S ×A 7→ R is the reward perceived by the agent when
the world falls into state s after executing action a;
- γ is the discount factor and b0 is the a priori knowledge about the
state, i.e. the initial belief state, assumed non-deterministic.

Compared to DET-POMDPs, our proposed extended model presents
changes on the observability function and is defined as follows:

DEFINITION 2. A Quasi-deterministic POMDP (QDET-POMDP)
is a tuple 〈S, A, T , O,R, b0〉, where:
- S,A, T ,R, b0 are the same as in Definition 1;
- O(z, a, s′) : Ω × A × S 7→ [0, 1] is the observation function
indicating the probability of getting observation z when the world
falls in s′ after executing a;
Moreover, ∀ s′ ∈ S, a ∈ A, ∃ z ∈ Ω, s.t. O(z, a, s′) > θ > 1
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,

i.e. the world is minimally observable and the probability of getting
one of the observations is lower bounded in each state by one half;

To handle the multiagent case in both definitions, simply con-
sider a set of agents where each agent i has its own action set Ai
and where the joint action set A is the product of all the agents’
action sets. The transition and the observation functions are then
just defined over the joint action set, and the condition on minimal
observability is defined for all joint action a in A.

However, assuming that all agents have the same observability
capacity (and hence the same observation space), only the study
of the QDET-POMDP is necessary from which we will extend to
the multiagent case. Indeed, one can consider that there exists in a
QDET-DEC-POMDP a most likely observation of the state whatever
the chosen joint action is, like in the monoagent case.



2.2 Enough-Observable models
Furthermore, in order to ensure completely the convergence of

the agent’s state knowledge, we propose to ensure the observability
of this state through the observation function.

Enough-observable models ensure that there is only one most
likely observation (MLO) in each state and that each state’s MLO is
not the MLO of any other state:

DEFINITION 3. An enough-observable QDET-POMDP is a QDET-
POMDP where following assumptions holds:
∃o1 ∈ Ω, ∀a ∈ A, ∀s ∈ So1 ,
with So1 = {s ∈ S, o1 ∈ Ω|P (o1|s, a) > P (o|s, a), ∀o 6= o1},
then |Ω| = |S| and |So1 | = 1

Here, So1 is the set of states where o1 is the MLO.
Considering this definition, one can state our first main result:

THEOREM 1. Under the enough-observability assumption,
bk(s) > 1− ε iff

n >
1
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Where ν = maxs,a
∑
z∈Ω I(θ > O(z, a, s) > 0) < |Ω|.

Where n is the number of successful observations of the real un-
derlying state, k the number of steps and ν represents the way the
error spreads over the states.

Theorem 1 thus states that if the observation is good enough and
if the error spreads over many states, then it suffices to have one
half of the observations plus one to be the real underlying state to
converge to a deterministic belief state.

Once the number n of MLOs is lower bounded, finding the prob-
ability to achieve at least this number is simply an application of
the binomial distribution to have at least n successes over k trials:

COROLLARY 2. In any QDET-POMDP under enough-observability
assumption, the probability that a belief state bk(s) is ε-deterministic
after k steps is:

∃s,Pr(bk(s) > 1− ε) =

k∑
i=n

(
k
i

)
θi(1− θ)k−i (2)

In other words, this indicates that to be certain (with a small δ)
to have a deterministic belief state (with a small ε) we may have to
explore a large horizon if θ is too small (e.g. near 0.5).

Let us now derive the worst case complexity from these bounds.

3. COMPLEXITY ANALYSIS
3.1 Mono-agent case

A major implication of Theorems 1 is the reduction of the com-
plexity of general POMDPs problems when a QDET-POMDP is en-
countered. Indeed, [4] have shown that finite-horizon POMDPs are
PSPACE-complete. However, fixing the horizon T to be constant,
causes to complexity to fall down many steps in the polynomial hi-
erarchy [7]. In the case of constant horizon POMDP, one can state:

PROPOSITION 3. Finding a policy for a finite-horizon-k POMDP,
that leads to an expected reward at least C is ΣP

2k−1.

PROOF. To show that the problem is in ΣP
2k−1, the following

algorithm using a ΣP
2k−2 oracle can be used: guess a policy for

k − 1 steps with the oracle and then verify that this policy leads to
an expected reward at least C in polynomial time by verifying the
|Ω|k possible histories, since k is a constant.

As QDET-POMDPs are a subclass of POMDPs and since fixing 1−δ,
the wanted probability to be in a ε-deterministic belief state, in-
duces a constant horizon under enough-observability assumption:

COROLLARY 4. Finding a policy for an infinite horizon QDET-
POMDP, under enough-observability assumption, that leads to an
expected reward at least C with probability 1− δ, is ΣP

2k−1.

Practically, finding a probably approximatively correct ε-optimal
policy for a QDET-POMDP thus implies using a k-QMDP algorithm
that computes exactly k exact backups of a POMDP and then uses
the policy of the underlying MDP for the remaining steps (eventu-
ally infinite).

To sum up, by fixing the wanted probability (1-δ) to be in a
ε-deterministic belief state, one can upper-bound the horizon on
which it is necessary to plan, from which one can ensure that fol-
lowing the optimal policy of the underlying POMDP will perform
well. Now, let us see how can this result can be extended to decen-
tralized decision making.

3.2 Multi-agent case
Concerning the DEC-POMDPs, the improvement is much greater.

Indeed, DEC-POMDPs are known to be exceptionally hard to solve
optimally in the finite horizon case (NEXP-complete [1]) and even
to approximate it [6].

By restricting the model to be quasi-deterministic, and assuming
that all agents still have enough-observability, one can state:

COROLLARY 5. Finding a policy for an infinite horizon QDET-
DEC-POMDP, under enough-observability assumption, leading to
an expected reward at least C with probability 1− δ, is PSPACE.

Note that the assumption of enough-observability seems less ap-
plicable in DEC-POMDPs than in POMDPs since many internal val-
ues of the agents are also in the joint state of the DEC-POMDP and
thus are not necessarily observable. However, assuming a quasi-
reliable communication system between agents is not so restrictive
and induces naturally the enough-observability assumption.

4. CONCLUSION
We presented a new subclass of of POMDPs called enough-observ-

able QDET-POMDPs that encompasses numerous decision problems
where the environment is well defined and controlled but just par-
tially observed. A study of their convergence properties leads to a
significant improvement in terms of computational complexity.
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