R-FRTDP: A Real-Time DP Algorithm with
Tight Bounds for a Stochastic Resource
Allocation Problem

Camille Besse, Pierrick Plamondon, and Brahim Chaib-draa

Computer Science & Software Engineering Dept., Laval University,
Québec (Qc), Canada,
{besse,plamon,chaib}@damas.ift.ulaval.ca,
http://www.damas.ift.ulaval.ca/

Abstract. Resource allocation is a widely studied class of problems
in Operation Research and Artificial Intelligence. Specially, constrained
stochastic resource allocation problems, where the assignment of a con-
strained resource do not automatically imply the realization of the task.
This kind of problems are generally addressed with Markov Decision
Processes (MDPs). In this paper, we present efficient lower and upper
bounds in the context of a constrained stochastic resource allocation
problem for a heuristic search algorithm called Focused Real Time Dy-
namic Programming (FRTDP). Experiments show that this algorithm is
relevant for this kind of problems and that the proposed tight bounds
reduce the number of backups to perform comparatively to previous ex-
isting bounds.

1 Introduction

Resource Allocation problem is a widely studied class of problem in Operation
Research and Artificial Intelligence. This class is known to be NP-complete [10].
Since resources are usually constrained, the allocation of resources to one task
restricts the options available for other tasks. As the action space is exponential
according to the number of resources, and as the state space is exponential
according to number of resources and tasks, this type of problem with time
constraints is very complex.

A common way of addressing this large stochastic problem is by using Markov
Decision Processes (MDPs), and in particular real-time search where many algo-
rithms have been developed recently. For instance Real-Time Dynamic Program-
ming (RTDP) [1], LRTDP [4], FRTDP [9], HDP [3], LAO* [5] are all state-of-the-art
heuristic search approaches in a stochastic environment. Because of its anytime
quality, RTDP, introduced by Barto et al. [1] is an interesting approach since it
updates states in trajectories from an initial state sy to a goal state s, in a very
efficient way.

Actually, RTDP is much more effective if the action space can be pruned of
sub-optimal actions. To do this, McMahan et al. [6], Smith and Simmons [9],

and Singh and Cohn [8] proposed solving a stochastic problem using a RTDP
type heuristic search with upper and lower bounds on the value of states.

The bounds proposed by McMahan et al. [6] are related to a stochastic short-
est path problem. Their approach is well suited for problems where the rewards
(or costs) are obtained whenever an action is executed in a state. In the case of
our resource allocation problem where rewards are only obtained when tasks are
achieved, this approach is not applicable.

The FRTDP approach by Smith and Simmons [9] proposes an efficient tra-
jectory of state updates to further speed up the convergence, given upper and
lower bounds. This efficient trajectory of state updates are combined to the ap-
proach proposed in this paper as we focus on the definition of tight bounds for
a constrained resource allocation problem.

On the other hand, the bounds proposed by Singh & Cohn [8] are suitable
to our case, and extended in this paper using, in particular, the concepts of task
criticality and feasibility to elaborate tight bounds. These bounds are imple-
mented in the context of a FRTDP heuristic search approach.

Our bounds are compared theoretically and empirically to the bounds pro-
posed by Singh & Cohn using the FRTDP approach. Indeed, when implementing
FRTDP with our proposed upper and lower bounds, its convergence to the op-
timal policy is faster compared to the Singh & Cohn bounds using the same
algorithm. Also, even if the algorithm used to obtain the optimal policy is RTDP,
our bounds can be used with any other algorithm to solve an MDP. The only con-
dition on the use of our bounds is to be in the context of stochastic constrained
resource allocation.

Figure 1 gives an example of a stochastic resource allocation problem to
execute tasks. In this problem, there are two tasks to realize: ta; = {wash the
dishes}, and tas = {clean the floor}. These two tasks are either in the realized
state, or not realized state. Thus, the combination of the specific states of the
individual tasks determines the four global states in Figure 1. To realize the tasks,
two type of resources are assumed: res; = {brush}, and resy = {detergent}. A
computer has to compute the optimal allocation of these resources to the cleaner
robots to realize their tasks. In this problem, a state represents a conjunction
of the particular state of each task and a time interval for which the task are
going to be in this state. The resources may be constrained by the amount that
may be used simultaneously. Furthermore, the higher is the number of resources
allocated to realize a task, the higher is the expectation of realizing the task. A
possible action in this state may be to allocate one unit of detergent to task taq,
and one brush to task tas. The state of the system changes stochastically, as
each task’s state does. For example, the floor may be clean or not with a certain
probability, after having allocated the brush to clean it.

Dishes
and
vacuum
done

Vacuum
done and
dishes dirty

Dishes
washed and
floor dirty

Dishes
and floor
dirty

to allocate to

s } Limited resources
N—r
execute tasks

Fig. 1. Task transition graph.

2 Markov Decision Processes (MDPs) in the Context of
Resource Allocation

A Markov Decision Process (MDP) framework is used to model our stochastic
resource allocation problem. MDPs have been widely adopted by researchers to-
day to model a stochastic process. This is due to the fact that MDPs provide a
well-studied and simple, yet very expressive model of the world.

An MDP in the context of a resource allocation problem with limited resources
is defined as a tuple (Res, Ta, S, A, P,W, R,), where:

— Res = (resi,...,Tes|res|) is a finite set of resource types available for a
planning process.

— Ta is a finite set of tasks with ta € Ta to be executed.

— Sis a finite set of states with s € S. A state s is a tuple (¢start, tend, Ta, alloc).
In particular, ¢4, is the start time of the state, t.,q is the end time of the
state. alloc is a set of allocations which are already in execution at time
tstare- Also, S contains a non empty set s, C S of goal states. A goal state
is a sink state where an agent stays forever.

— A is a finite set of actions (or assignments). The allocations a € A(s) appli-
cable in a state are the combination of all resource assignments that may be
executed, according to the state s. In particular, a is simply an allocation
of resources to the current tasks, and a;, is the resource allocation to task
ta. Each action has a start time t4 4.+ and an end time t.,q. The possible
actions are limited by the amount that may be used on a task at a particular
time.

— Transition probabilities P,(s’|s) for s € S and a € A(s).

— W = [wy,] is the relative weight (criticality) of each task.

— State rewards R = [rg] : Y 7s,, < Rs,, X wy,. The relative reward of the
ta€Ta

state of a task rs,, is the product of a real number R, , by the weight factor

Wy,. For our problem, a reward of 1 X wy, is given when the state of a task
(Stq) is in an achieved state, and 0 in all other cases.

— A discount factor v, which is a real number between 0 and 1. The discount

factor describes the preference of an agent for current rewards over future

rewards.

A solution of an MDP is a policy 7 mapping states s into actions a € A(s). In
particular, 7, (s) is the action (i.e. resources to allocate) that should be executed
on task ta, considering the global state s. In this case, an optimal policy is
one that maximizes the expected total reward for accomplishing all tasks. The
optimal value of a state, V (s), is given by:

V*(s) = R(s) + max P,(1
(5 S P9V) 1)

The end time te,q of s is set to the earliest ending time of an action in allocation
(alloc) or to execute (a) in state s. The start time g0 of state s’ is equal to
time te,q of state s. Furthermore, one may compute the Q-Values Q(a, s) of each
state action pair using the following equation:

Q(a,5) = R(s)+7 Y _ Pu(s'|s) max Q(a s') (2)

es a’'€A(s")

where the optimal value of a state is V*(s) = mj(x Q(a, s). The policy is sub-
a€c

jected to the resource constraint res(m(s)) < Cs,..V s € S, and V res € Res,
where (s, is the resource constraint on tasks T'a. Heuristic search may reduce
the complexity of a stochastic resource allocation problem by focussing on rel-
evant states. To this end, Real-Time Dynamic Programming (RTDP) heuristic
search is now introduced.

3 Real Time Dynamic Programming

Barto et al. [1] proposed Real Time Dynamic Programming (RTDP) (Algorithm
1) as an effective real-time heuristic search approach. RTDP is a simple dynamic
programming algorithm that involves a sequence of trial runs, each starting in
the initial state sy and ending in a goal or a solved state. Each RTDP trial
(TRIALRECURSE function) is the result of simulating the policy 7, through the
PICKNEXTSTATE function, while updating the upper bound values s.U using a
Bellman backup (Equation 1) over the states s that are visited. h(s) is a heuristic
which defines an initial value for state s’. This heuristic has to be admissible —
The value given by the heuristic has to overestimate (or underestimate) the
optimal value when the objective function is maximized (or minimized). For

example, an admissible heuristic for a stochastic shortest path problem is the
solution of a deterministic shortest path problem. Indeed, since the problem is
stochastic, the optimal value is lower than for the deterministic version. The new
set of tasks to accomplish is produced by the PICKNEXTSTATE function which
randomly picks a none-solved state, containing a new set of tasks to realize, by
executing the current policy.

It has been proven that RTDP, given an admissible initial heuristic on the
value of states cannot be trapped in loops, and eventually yields optimal values
[4].

Algorithm 1 RTDP
Function initNode(s): {implicitly called Function TRIALRECURSE(s):
the first time each state s is touched} 4: if s € then return
1: s.U < hu(s) 7(s) « argmax,QU(s, a)
Function RTDP(so,hv): s’ s.PICKNEXTSTATE()

2: loop TRIALRECURSE(so) TRIALRECURSE(s')
: BACKUP(s)

P T

Function BACKUP(s):)
3: s.U < max,QU(s,a) Function QU(s,a):
9: return R(s,a)+v> sV Teys’ U

3.1 Focused RTDP

Focused RTDP (alg. 2) is an RTDP based algorithm proposed by Smith & Simmons
[9]. As in RTDP, FRTDP’s execution consists in trials that begin in a given initial
state sp and then explore reachable states of the state space, selecting actions
according to an upper bound. Once a final state is reached, it performs Bellman
updates on the way back to sq.

Unlike RTDP, FRTDP maintains also a lower bound and uses others criteria
to select actions outcomes and to detect trial termination. The lower bound is
used to establish the policy and it also contributes in the priority calculation of
states to expand on the fringe of the search tree. Trial termination detection has
been modified and improved by adding an adaptive maximum depth D in the
search tree in order to avoid over-committing to long trials early on. In fact, the
maximum depth D is updated by kpD each time the trial is not useful enough.
This usefulness is represented by W where § measures how much the update
changed the upper bound value of s and W the expected amount of time the
current policy spends in s, adding up all possible paths from sy to s. Refer to
the pseudo-code of Algorithm 2 and to Smith & Simmons’ article [9] for details.

3.2 Singh & Cohn’s Lower and Upper Bounds

Singh & Cohn [8] defined lower and upper bounds for a stochastic problem. Their
approach is pretty straightforward. First of all, a value function is computed for

Algorithm 2 Focused RTDP
Function INITNODE(s): {implicitly called = Function BACKUP(s):
the first time each state s is touched} 15: s.L « max,QL(s,a)
1: (s.L,s.U) « (hr,hu); s.prio — A(s) 16: u — max,QU(s, a)

Function FRTDP(so, €,hr,hu,Do.kp): 17: a" — argmax,QU(s, a)
2: D — Dy 18: 6 «— |s.U — u|
3: while s0.U — s0.L > ¢ do 19: s.U —u .
4: (qpy Np; ge, TLc) — (O, 0, 0, 0) 20: D MmaXses fYT;S’S/'PiriO
5: TRIALRECURSE(so,W = 1,d = 0) 21: s" < argmaxyes YTy o8 prio
6: if (gc/ne) > (gp/np) then 22: s.prio < min(A(s),p)
D —kpD 23: return (a*,s",d)
7: end while
Function TRIALRECURSE(s, W, d): Function A(s):
8: (a*,s*,8) — BACKUP(s) 24: return |s.U —s.L| —¢/2

9: TRACKUPDATEQUALITY (0W, d)
10: if A(s) <0 or d > D then return Function QL(s,a):

11: TRIALRECURSE(s* yT2 - W ,d + 1) 25: return R(s,a) +7) sV 58" L
12: BACKUP(s)

Function TRIALUPDATEQUALITY (g, d): Function QU(s,a): .
13: if d > D/kp then 26: return R(s,a)+7> 51T os"U

(ge,me) = (ge + g, e + 1)
14: else (gp,np) — (¢p + ¢, np + 1)

all tasks to realize, using a standard RTDP approach. Then, using these task-value
functions, a lower bound Ay, and upper bound hy can be defined. In particular,
hr(s) = maxiaera Via(Sta), and hy(s) = 3, crq Via(8ta). The admissibility of
these bounds has been proven by Singh & Cohn, such that, the upper bound
always overestimates the optimal value of each state, while the lower bound
always underestimates the optimal value of each state. In this paper, the bounds
defined by Singh & Cohn and implemented using FRTDP define the SINGH-FRTDP
approach.

The next sections propose to tighten the bounds of SINGH-FRTDP to permit
a more effective pruning of the action space.

3.3 Reducing the Upper Bound

In the next two sections, tight bounds are proposed for a stochastic resource
allocation problem. The FRTDP approach initiated with these bounds defines
the Resource FRTDP (R-FRTDP) approach.

The upper bound of SINGH-FRTDP includes actions which may not be possible
to execute because of resource constraints. To consider only possible actions, the
upper bound is now:

hy(s) = max Z Q1a(aiq, Sta) (3)

a€A(s) ta€Ta

where Q4 (ata, Sta) is the Q-value of task ta for state sy, and action ay, computed
using a FRTDP approach.

When the time is introduced into the problem, matching task states to the
global state is not obvious. Indeed, the start time and end time of a global state
are generally different of the start time and end time of the specific state of
each task. This is caused by the fact that the end time of a state s is obtained
according to the time of the first action to end when considering all tasks. On
the other hand, the end time of a task state s;, is obtained with the first action
to end, when considering the current task ta only.

To match correctly a task state sy, within a global state s, we find a task
state for which:

tsta'rtm < tstart < tendm (4)

where tstart,, and tenq,, are, respectively the starting and ending time of si4.
Also, stq has to match the other characteristics of the task ta in the global state
s.

Here, the best matching state for a task is found. It is a matching state since
the start time of s;, is less or equal than the start time of the global state s.
Indeed, the possible actions in state s;, are equal or greater than the possible
actions in state s for task ta. Also, it is the best matching state because one and
only one state for a task can satisfy Equation 4 and it is the state which has the
start time the nearest possible of ts:4,¢, but for which ¢s14s¢,4 i nOt greater than

tstart~
Theorem 1 The upper bound of Equation 8 is admissible.

Proof: The resource constraints are satisfied because the upper bound is com-
puted using all global possible actions a. However, hy;(s) still overestimates V*(s)
because the future states of the tasks violates the resource constraint. Indeed,
each task may use all consumable resources for its own purpose. Doing this pro-
duces a higher value for each task, than the one obtained when planning for all
tasks globally with the shared limited resources. B

Complexity of Computing the Upper Bound For the upper bound, SINGH-
FRTDP and R-FRTDP compute a value function for each task. We consider | S|
as the number of possible states for task ta. Also, |Stg| is the number of possible
joint states for all tasks ta € Ta. Since |Stq| is combinatorial with the number
of tasks, thus |Si,| < |S74|- Indeed,

|STa| = O(|Sta|‘Ta‘) (5)

When the number of tasks is high, the complexity of computing a value function
for each task is negligible compared to computing a global value function for all
tasks. The main difference in complexity between the SINGH-FRTDP approach,
and R-FRTDP is how the value function is used. The SINGH-FRTDP approach
simply sums the value function Vi, (st,) of each task ta to determine the upper
bound of a state s. As for R-FRTDP, all global actions a € A(s) are computed

to determine the maximal possible upper bound, considering the resource con-
straints of a state s. Thus, the complexity to determine the upper bound of a
state is O(|A| x |T'al). The computation of all global actions is much more com-
plex than simply summing the value functions, as in SINGH-FRTDP. A standard
Bellman backup, when computing the global solution sums |S| for each a € A(s),
thus has complexity O(|A| x |S]). Since |A| x |T'a| < |A| x |S|, the computation
time to determine the upper bound of a state, which is done one time for each
visited state, is much less than the computation time required to compute a
standard Bellman backup for a state, which is usually done many times for each
state. Thus, the computation time of the upper bound is negligible.

Increasing the Lower Bound As time is integrated in this problem a first
heuristic is to use a rule based reactive planner to assign resources as tasks
income. Thus, the lower bound we develop assign resources to tasks according
to their priority and remaining time while respecting constraints as described
by algorithm 3. Practically, trials are made with action chosen by the reactive
planner in order to evaluate its policy. Choice of next states of actions are made
depending on the same criteria as FRTDP (see section 3.1 or [9]). An adaptive
number of trial is also chosen, until the value gained between each trial is no
more a fixed threshold. As a result, an approximation of a sub-optimal policy is
calculated depending on time wanted to be spend on lower bound calculation.

Theorem 2 The lower bound proposed in this section is admissible.

Proof: This is a lower bound since the reactive policy is sub-optimal and resource
constraints are checked by the algorithm 3.

4 Experimental Results

The domain of the experiments is a naval platform which must counter incoming
missiles (i.e. tasks) by using its resources (i.e. weapons, movements). For the
experiments, 100 randomly resource allocation problems were generated for each
approach, and possible number of tasks. In our problem, |S;,| was generally 7,
thus each task can be in 6 distinct states. In particular, there were generally
5 possible states for a missile where actions can be performed to counter it. In
other words, there are 5 possible reallocation for a missile until it is too late
to execute it. The number of reallocation depends greatly on the speed of the
missile and its time of appearance. For each task, there are two goal states; a
state where the missile is realized, and a state where the missile has hit the ship.
The state transitions are all stochastic because when a missile is in a given state,
it may always transit in many possible states. The number of resource type has
been fixed to 3, where each type has constraints on the amount that may be
used at a time. In particular, at most 1 resource of any type can be allocated
on a task on a particular time. This constraint is also present on a real naval
platform because of sensor and launchers constraints and engagement policies.

Algorithm 3 hj: Reactive algorithm [2]

1: Inputs: Tasks: Tasks list;

Resources: Resources list;

{Tasks pre-treatment:}
Tasks « PRIORITIZE(T asks)
Resources < ORDERBYEFFICIENCY (Resources)

T «— FIRST(Tasks)
R «— FIRST(Resources)
while Resources # @ do
if AvAILABLE(R) and ASSIGNABLE(R,T") then
10: ASSIGN(R,T)
11: Tasks «— Tasks \ {T'}
12: Resources — Resources \ {R}
13: T «— FIrST(Tasks)
14: else
15: T «— NEXT(Tasks)
16: end if
17 R « FIRST(Resources)
18: end while
19: return An allocation of all available resources

©

Each resource type has its specific range of effectiveness. In particular, the first
resource type generally has 3 possible reallocations before the threat is too near
of the ship to be able to use this resource. The effectiveness of this resource varies
between 90% and 95%. These variations in effectiveness depends greatly on the
type of threat and its range from the ship. The second resource type has a part
of its effectiveness range which overlaps with the first resource type and has 2
possible reallocations on a threat. The effectiveness of this resource is between
35% and 50%. The last resource type can be used when the threat is very near
the ship and has no possible reallocation to it. The effectiveness of this resource
varies between 65% and 85%. The bulk of the planning work is on made on the
decisions of how to allocate the first resource type which has a big range and a
high probability of effectiveness.

The optimal R-FRTDP, SINGH-FRTDP, UP-FRTDP and LOW-FRTDP approaches
are compared in Figure 2. Two more versions have been added to the results.
First of all, Up-FRTDP uses the lower bound of Singh & Cohn [8] and the upper
bound of Section 3.3. Then, LOW-RTDP uses the upper bound of Singh & Cohn
[8] and the lower bound of Section 3.3.

In terms of experiments, notice that the SINGH-FRTDP approach for resource
allocation, which use loose bounds requires the most time for convergence. For
instance, it takes an average of 26.6 seconds to plan for an SINGH-FRTDP ap-
proach with eight tasks (see Figure 2). The R-FRTDP approach solves optimally
the same type of problem in an average of 3.23 seconds. This is a very significant
improvement. The number of iterations required for convergence is significantly

10

F T T T T T T B

10 FSINGH-FRTDP [J 3

0 : R-FRTDP & 3

2 Up-FRTDP A]
8 Low-FRTDP O

£ ; / :]

2 I H A 1

£ 0lf 3

0.01 4!

Number of tasks

Fig. 2. Computational efficiency of R-FRTDP, SINGH-FRTDP, UP-FRTDP (Lower bound
of Singh & Cohn and upper bound of Section 3.3), LOW-FRTDP (upper bound of Singh
& Cohn and lower bound of Section 3.3).

smaller for R-FRTDP SINGH-FRTDP. Indeed, the more tight the bounds are, the
faster these bounds converge to the optimal value.

On the figure results, we may also observe that the reduction in planning
time of R-FRTDP compared to SINGH-FRTDP is obtained mostly with the lower
bound. Indeed, when the number of task to execute is high, the lower bounds
by SINGH-FRTDP takes the values of a single task. On the other hand, the lower
bound of R-FRTDP takes into account the value of all task by using a heuristic to
distribute the resource. Indeed, an optimal allocation is one where the resources
are distributed in the best way to all tasks, and our lower bound heuristically
does that.

5 Conclusion

The experiments have shown that R-FRTDP provides a potential solution to solve
efficiently stochastic resource allocation problems. Indeed, the planning time of
R-FRTDP is significantly lower than for FRTDP with no initial heuristic or with
the Singh & Cohn [8] heuristic. While the theoretical complexity of R-FRTDP is
higher than for SINGH-FRTDP, its ability to produce a tight bound offsets this
aspect, as shown in the experiments.

An interesting research avenue would be to experiment R-FRTDP with other
heuristic search algorithms than FRTDP. HDP [3], and LAO* [5] are both efficient
heuristic search algorithms which could be implemented using our bounds. As a
matter of fact, the bounds proposed in this paper can be used with any stochastic
algorithm which solves a perfectly observable resource allocation problem.

Furthermore, our approach could be improved by considering the probability
of new tasks coming in the environment and reserving resources for them as done

11

by Mercier & Van Hentenryck [7]. This would permit to have a more effective
model and thus a better allocation.

References

1.

2.

10.

A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-time
dynamic programming. Artificial Intelligence, 72(1):81-138, 1995.

D. Blodgett, P. Plamondon, B. Chaib-draa, P. Kropf, and E. Boss. A method to op-
timize ship maneuvers for the coordination of hardkill and softkill weapons within
a frigate. In 7" International Command and Control Research and Technology
Symposium (7" ICCRTS), Quebec, QC, September 2002.

B. Bonet and H. Geffner. Faster heuristic search algorithms for planning with
uncertainty and full feedback. In Proceedings of the Eighteenth International Joint
Conference on Artificial Intelligence (IJCAI-03), August 2003.

B. Bonet and H. Geffner. Labeled RTDP: Improving the convergence of real-time
dynamic programming. In Proceeding of the 13Th International Conference on
Automated Planning & Scheduling (ICAPS-03), pages 12-21, Trento, Italy, 2003.
E. A. Hansen and S. Zilberstein. LAO* : A heuristic search algorithm that finds
solutions with loops. Artificial Intelligence, 129(1-2):35-62, 2001.

. H. B. McMahan, M. L., and G. J. Gordon. Bounded real-time dynamic program-

ming: RTDP with monotone upper bounds and performance guarantees. In ICML
’05: Proceedings of the 22nd international conference on Machine learning, pages
569-576, New York, NY, USA, 2005. ACM Press.

L. Mercier and P. V. Hentenryck. Performance analysis of online anticipatory
algorithms for large multistage stochastic integer programs. In Proceedings of the
Twentieth International Joint Conference on Artificial Intelligence (IJCAI-07),
2007.

S. Singh and D. Cohn. How to dynamically merge markov decision processes. In
Advances in neural information processing systems, volume 10, pages 1057-1063,
Cambridge, MA, USA, 1998. MIT Press.

T. Smith and R. Simmons. Focused real-time dynamic programming for MDPs:
Squeezing more out of a heuristic. In Proceedings of the National Conference on
Artificial Intelligence (AAAI), Boston, USA, 2006.

W. Zhang. Modeling and solving a resource allocation problem with soft constraint
techniques. Technical report: wucs-2002-13, Washington University, Saint-Louis,
Missouri, 2002.

