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Abstract

Learning by imitation has shown to be a powerful
paradigm for automated learning in autonomous robots.
This paper presents a general framework of learning by im-
itation for stochastic and partially observable systems. The
model is a Predictive Policy Representation (PPR) whose
goal is to represent the teacher’s policies without any ref-
erence to states. The model is fully described in terms of
actions and observations only. We show how this model
can efficiently learn the personal behavior and preferences
of an assistive robot user.

1 Introduction

Domestic and assistive robots are becoming increasingly
prevalent in the research community, and the hope is that in
the next 5-10 years, they will also permeate our living and
working environments. The environments of such systems
are typically complex, stochastic and partially observable,
and the planning task should take into account these prob-
lems in order to get robust performance. There are two main
models used to represent these types of environments: Par-
tially Observable Markov Decision Processes (POMDPs)
[14], and more recently, Predictive State Representations
(PSRs) [10]. However, learning a model of the environ-
ment often requires a large amount of sampled data be-
fore getting accurate parameters. Imitative learning [1, 2]
is a well-known technique that provides a fast and efficient
way of acquiring new skills without the need for extensive
experimentation. It is also justified somewhat by the fact
that much of biological learning is done by imitation. In
assistive robotics, where the human-machine interaction is
omnipresent, imitative learning can be a powerful learning
paradigm. In the imitation process, a learner agent observes
the actions of a teacher agent, and tries to find the rela-
tion between the actions and the different encountered situ-
ations. A growing body of work has been done over the past
few years on the imitative learning framework for fully ob-
servable systems, but there has been less focus on applying

these ideas to partially observable environments. Some of
the proposed solutions [6, 15] use a POMDP model to rep-
resent the policy of the teacher, and then learn the parame-
ters of this POMDP by using the Expectation-Maximization
method [9], which needs considerable data for learning, and
is subject to local minima unless a good initialization of
the parameters is provided. Initializing the parameters of
a policy is a difficult problem because the states of a given
policy correspond to mental states rather than to physical
situations. In this paper, we propose a new method to learn
the teacher’s policy by using predictive representations [10],
which are generally easier to learn than state-based repre-
sentations [7]. We start by giving an overview of the two
problems that will be used as a benchmark for our approach,
then we present a background on POMDP and PSR frame-
works. We describe the new imitative learning framework,
and conclude by presenting an empirical analysis of our al-
gorithm.

2 Motivating problems

Intelligent wheelchairs are one instance of assistive
robots where the human user is constantly interacting with
the machine. They are generally designed to assist individu-
als with mobility impairments who have difficulty with fine
motor skills, and therefore cannot easily or safely operate
a standard motorized wheelchair. The intelligent controller
is designed to reduce their physical (and sometimes cogni-
tive) load. Many of these individuals however are not will-
ing to relinquish full control to an intelligent controller, thus
a shared control solution is preferred.

As part of this shared control, the intelligent wheelchair
should be able to detect the anomalous behavior of the user
and to switch into automatic control mode (or alert the user).
This problem can be cast as a problem of learning a policy
for the human controller, and thus is a suitable candidate for
the methods we present in this paper.

The second problem we are interested in addressing is
the classical pathfinding problem. In general, this problem
can be solved efficiently if the environment dynamics are
known in advance (e.g. using A*-type methods, or the more



complex POMDP framework). But these approaches work
best when the optimization criterion is simple (e.g. mini-
mum distance). Note however that the shortest path is not
always the user’s preferred path, and in some cases the user
may wish to choose between several short paths. This prob-
lem can also be cast in the imitation learning framework,
and solved with the methods outlined below. We will return
to these problems in the latter part of this paper.

3 Background

3.1 POMDPs

Formally, a POMDP [14] is defined by the following pa-
rameters: the system states set S ; the agent actions set A ;
the observations set O; the transition and observation func-
tion1 T (si,ai,oi,si+1) which returns the probability of tran-
siting from the state si to the state si+1 and observing oi after
having executed ai; and the reward function R(si,ai).

In POMDPs, the hidden state is represented by a prob-
ability distribution over the states, called the belief state:
bi = [Pr(si = s0),Pr(si = s1), . . . ,Pr(si = s|S |−1)]T . The
Markov property guarantees that the belief state and the full
history of the system contain exactly the same information
about the actual state. In fact, we start with an initial belief
state b0, and every time we execute an action ai and receive
an observation oi, we update the belief state bi by:

bi+1(s j) =
∑sk∈S bi(sk)T (sk,ai,oi,s j)

∑sk∈S ∑sl∈S bi(sk)T (sk,ai,oi,sl)
(1)

Baum-Welch algorithm (an adaptation of the Expectation-
Maximization method) is considered as the standard algo-
rithm for learning the parameters of a POMDP [9]. It finds
the parameters that locally maximize the likelihood of a
given sequence of actions and observations.

3.2 PSRs

PSRs [12] are an alternative model for representing par-
tially observable environments without reference to hidden
variables. The fundamental idea of PSRs is to replace the
probabilities on states by probabilities on future possible
trajectories, called tests. A test t = a1o1 . . .akok is an or-
dered sequence of actions and observations. The probability
of t starting at time step i is defined by:

Pr(t|hi) = Pr(oi+1 = o1, . . .oi+k = ok|hi,ai+1 = a1, . . .ai+k = ak)

where hi = a0o0 . . .aioi is the history until the step i.
The system-dynamics matrix D is an infinite matrix

where ∀t,h : D(t,h) = Pr(t|h). This matrix can be seen as
1We denote by ai (resp. oi, si) the current action (resp. observation,

state) at time step i, and by ai (resp. oi, si) a given action (resp. observation,
state) in the set A (resp. O, S ).

a general model, that can describe any discrete dynamical
system, since it returns the probability of any event after
any history. In practice, we can only generate a finite sub-
matrix of D that should contain the same information as the
full matrix. For a large category of dynamical systems, we
can prove that the probability of any test t depends only on
the probabilities of a few tests, called core tests, which con-
stitute a sufficient statistic for the system.

We indicate the core tests by q1,q2, . . .qN . Q
indicates the set of these tests, and Pr(Q|h j) =
(Pr(q1|h j),Pr(q2|h j), . . . ,Pr(qN |h j))T is the probability
vector for the core tests at time step j, which is equivalent
to the belief state in POMDPs. We have then:

Pr(t i|h j) = ft i(Pr(Q|h j)) (2)

where ft i is a function associated to the test t i, this function
is independent of the history, and allows us to calculate the
probability of t i by using only the probabilities of Q. The
Bayes update function for PSRs is given by:

Pr(qi|h jao) =
Pr(aoqi|h j)
Pr(ao|h j)

=
faoqi(Q|h j)
fao(Q|h j)

(3)

4 Predictive Policy Representations (PPRs)

In PPRs [3, 16], the roles of the actions and obser-
vations are switched. The probability that a test t =
o0,a1, . . .ok−1,ak succeeds is given by:

Pr(t|hi)= Pr(ai+1 = a1, . . . ,ai+k = ak|hi,oi = o0, . . . ,oi+k−1 = ok−1)

The history hi ends with an action and not an observation as
in PSRs, because tests in PPRs start with an observation. In
fact, step i is the moment after executing ai and before per-
ceiving oi. We also consider that all the histories start with
a fictive observation o∗ which has probability 1 (the default
observation). A test in PPRs can be seen as a question re-
garding what the agent will do when it perceives a specified
sequence of observations.

After executing an action a and perceiving an observa-
tion o, the following Bayes function is used to update the
probabilities of the core tests:

Pr(qi|h joa) =
Pr(oaqi|h j)
Pr(oa|h j)

=
mT

oaqiPr(Q|h j)

mT
oaPr(Q|h j)

(4)

We can see from this equation that to calculate the new
probability of core test q after executing a and perceiving
o, we need only to know for the probabilities Pr(oaqi|h j)
and Pr(oa|h j) of the tests oa and oaq.

A Predictive Policy Representation is defined by the fol-
lowing parameters: Q, the core tests list; Pr(Q| /0), the initial
probabilities of the core tests; ∀a∈ A,∀o∈O : moa, the vec-
tor associated to test oa; ∀a∈ A,∀o∈O,∀qi ∈Q : moaqi , the
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vector associated to test oaqi, composed by test oa followed
by test qi.

The policy matrix P is defined by the infinite set of all
possible tests and histories. An entry P(h j, t i) is given by
Pr(t i|h j), the probability that the actions indicated in the
test t i will be executed by the agent, such that the current
history of the system is h j and the future observations will
be the observations indicated in t i. The core tests of a linear
PPR corresponds to a basis of the policy matrix P. Inter-
estingly, we can prove [3] that the rank of the policy matrix
corresponding to a given Finite-State Controller (FSC [5])
is upper-bounded by the number of states of this controller.

The PPR model functions as follows: we start by ini-
tializing the probabilities Pr(Q| /0) of the core policy tests.
After observing o j+1 (or the default observation o∗ if we
did not yet execute any action, i.e. h j = /0), the probabilities
of the core policy tests are used to calculate a distribution of
probabilities over the next actions by:

Pr(a j+1 = ai|h jo j+1) = mT
o j+1aiPr(Q|h j) (5)

We select an action a j+1 according to this distribution, we
execute this action, and then we use this new information
(o j+1,a j+1) to update our core test probabilities by using
Equation 4. We add the event (o j+1,a j+1) at the end of
the history h j, which becomes h j+1, and we repeat the same
process for the next steps.

5 Imitation Learning with PPRs

In partially observable environments, the learner agent
can perceive only the actions and the observations of the
teacher, and it should be able to extract the teacher’s pol-
icy that is generating this control. This task can be formu-
lated easily as a problem of learning the parameters of a
PPR model, which is equivalent to the problem of learn-
ing the parameters of PSRs. Many algorithms for learning
PSRs have recently been proposed, some of them [8, 16]
assume that the system can be restarted to an initial state,
which is the case of systems where the objective is to attend
some final states, and others [11, 13, 17] are more related
to the systems running infinitely, without reset. The latter
algorithms can be classified in two categories: online algo-
rithms [11, 13], and off-line algorithms [17], depending on
the fact that the learning is performed after every action and
observation, or after a complete stream.

5.1 Learning PPRs Vs learning FSCs

Contrary to FSCs, PPRs can be learned by using Monte
Carlo estimation methods, which are guaranteed to con-
verge to the accurate parameters. This is due to the fact that
the PPR core tests can be observed and counted during the

Input: Train sequences T1 = (o∗a1,T1o2,T1a2,T1 . . .),
. . .Tn = (o∗a1,Tno2,Tna2,Tn . . .);

Output: A PPR model 〈Q,Pr(Q| /0),∀a ∈ A ,∀o ∈ O :
moa,∀a ∈ A ,∀o ∈ O,∀qi ∈ Q : moaqi〉 ;

Construct the matrix P̂ by calculating the estimated1

probabilities P̂(h, t) = P̂r(t|h) for all the sequences t
and h occurring in the training sequences Ti;
Initialize the core tests list Q with the empty test /0,2

Pr( /0| /0) = 1;
foreach q ∈ Q,a ∈ A ,o ∈ O do3

if the column of oaq in P̂ is linearly dependent on4

the columns of the core tests q′ ∈ Q;
then5

Find the vector moaq by solving the linear6

system P̂(h,oaq) = P̂(h,Q)moaq,∀h;
if q = /0 then moa = moaq7

else8

Add the test oaq to the list of core tests Q;9

Pr(oaq| /0) = P̂( /0,oaq);10

end11

end12

Algorithm 1: Analytical Discovery and Learning.

learning process, whereas the latent states in FSCs cannot
be observed. In fact, to calculate the probability of a core
test q at history h, we should only repeat h several times and
count the number of times q occurs after h. But to calculate
the probability of a state s at history h, even if we repeat
h several times, we should use the parameters of the FSC
to estimate Pr(s|h) since we cannot observe s but only its
effects. The FSC parameters cannot be known during the
process of learning them. Hence, FSCs learning algorithms
like Baum-Welch algorithm [9] start with random parame-
ters, and then alternate between the phase of estimating the
belief states bi at each step i of the training sequence and
the phase of optimizing the FSC parameters, until no more
optimization can be achieved. The result depends heavily
on the initial values, and is subject to local optima.

5.2 Learning with biased samples

We are interested here in controlled systems where the
goal can be specified as a final state, so we assume that the
system can be restarted. If the final state is not defined, we
can cut the stream at different points, and consider that the
system has been restarted at these points. We propose an
algorithm (Algorithm 1) close to the ADL (Analytical Dis-
covery and Learning), described in [8]. First, the learner
agent collects several samples T1 = (o∗a1,T1o2,T1a2,T1 . . .),
T2 = (o∗a1,T2o2,T2a2,T2 . . .) . . . Tn = (o∗a1,Tno2,Tna2,Tn . . .) by
observing the teacher’s behavior. The next step consists in
constructing partially the policy matrix P̂, with the available
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tests and histories. We use two tables Trial and Success,
where Trial[t i = o∗a1o2a2 . . .omam] = #o∗xo2x . . .omx, the
number of times where the observations of the test t i have
been perceived in the samples, regardless to the actions of t i,
and Success[t i = o∗a1o2a2 . . .omam] = #o∗a1o2a2 . . .omam,
i.e. Success[t i] counts the times where the actions and the
observations of t i matched with a prefix of a sampled se-
quence. We can now estimate the probabilities P̂(t i| /0) with
the following estimator ( /0 is the empty history):

P̂(t i = o∗a1o2a2 . . .omam| /0) =
m

∏
i=1

Success[o∗a1o2a2 . . .oiai]

∑
|A |
j=0 Trial[o∗a1o2a2 . . .oia j]

This estimator was proposed in [4] to deal with the prob-
lem of bias induced by the system dynamics. It’s originally
used to learn the parameters of a dynamical system when
the exploration policy is not blind, i.e. the executed actions
depend on the observations and are not totally random. This
problem is inherent to PPR parameters learning, because the
observations returned by the system depend on the executed
actions, unless the system dynamics is totally random.

Based on the first row of the matrix P̂ (corresponding
to the empty history), we use the Bayes update equation to
calculate iteratively the probabilities of the other rows (his-
tories): P̂(t i|h j) = P̂(t i| /0)

P̂(h j | /0)
. Given the matrix P̂, the next step

is to find the core policy tests. The first independent test is
always the null test. If q is a core test, then for every action
a and every observation o, we check if the column of the
extended test oaq depends linearly on the columns of the al-
ready discovered core tests, and calculate the weight vector
in that case. To do so, we use a Gauss-Jordan elimination,
the eigenvalues will correspond then to diagonal elements,
and the number of eigenvalues λi s.t λi ≥ ε corresponds ap-
proximately to the rank of the matrix, the cutoff ε is used to
reduce the number of discovered core tests when we have
a small amount of training data. The algorithm stops when
all the extensions of all the core tests in Q are linearly de-
pendent on Q. In fact, we can prove that if a test is linearly
dependent on other tests, then all its extensions will be also
dependent [10]. However, the main drawback of this algo-
rithm is in estimating the matrix P̂, since we have to calcu-
late the probability of each possible test, and we can have
until (|O||A|)t different tests for t steps. But in practice,
most of these tests are not experienced given that they are
generated according to the specific environment dynamics
and the teacher’s policy rather than uniformly.

5.3 Learning with heterogenous observations

In general, the observations can be different from the
teacher to the learner (the actions also can be different, but
we do not consider this case in the present paper). We use
OT to indicate the teacher’s observations set, and OL to in-
dicate the learner’s observations set. The other important

issue is that the observations of the teacher are unknown to
the learner, assuming that the learning is completely pas-
sive, the teacher and the learner are not sharing their infor-
mation, and the learner can observe only the teacher’s ac-
tions and his own observations. However, both of OT and
OL observations depend on the same parameter, which is
the common system state. For simplicity, we will adopt in
this section FSC notations instead of PPR, but the result can
be generalized to this latter model.

Let P = 〈S,A,OT ,OL,T 〉 be the POMDP model of the
system (our learning framework does not require specifica-
tion of a reward function), where T (si,a,〈oT ,oL〉,si+1) is
the probability of transiting from the state si to the si+1, af-
ter executing the action a, while the teacher perceives oT

and the learner perceives oL. We consider that the teacher is
following a stationary policy, described by an internal finite-
state controller C T = 〈ST ,ψT ,ηT 〉, ψ(sT ,a) is the probabil-
ity of choosing action a when the controller is in state sT ,
and ηT (sT

i ,a,oT ,sT
i+1) is the probability of transiting to state

sT
i+1 when the controller is the state sT

i , executes the action a
and receives the observation oT . We will show that even for
the learner agent, the teacher is following a stationary pol-
icy described by another finite state controller C L. From the
learner’s point of view, the teacher is part of the system (un-
der the stationarity assumption), so we can regroup the sys-
tem dynamics model P and the teacher’s policy C T in one
uncontrolled POMDP model P ×C T = 〈S×ST ,A,OL,T ′〉,
where

T ′(〈si,sT
i 〉,a,oL,〈si+1,sT

i+1〉) = Pr(〈si+1,sT
i+1〉,a,oL|〈si,sT

i 〉)

= ∑
oT∈OT

ψ
T (sT

i ,a)T (si,a,〈oT ,oL〉,si+1)ηT (sT
i ,a,oT ,sT

i+1)

From the joint model P × C T , we can extract a model
C L = 〈S× ST ,ψL,ηL〉, which describes only the policy of
the teacher as seen by the learner, and makes abstraction of
the environment dynamics.

ψ
L(〈si,sT

i 〉,a) = ψ
T (sT

i ,a)

and

η
L(〈si,sT

i 〉,a,oL,〈si+1,sT
i+1〉) =

T ′(〈si,sT
i 〉,a,oL,〈si+1,sT

i+1〉)
∑(si+1,sT

i+1) T ′(〈si,sT
i 〉,a,oL,〈si+1,sT

i+1〉)

The controller C L contains |S|× |ST | states, we can use
any learning algorithm to find the parameters of the policy
described by CL, which represents the teacher’s policy from
the learner’s point of view. The learned policy contains at
most |S| × |ST | states (or core policy tests), the divergence
between the learned policy and the actual policy depends on
the divergence between the two observation models.

6 Empirical Analysis

6.1 The simulated environment

We used a simulated environment to test our learning
framework on the two problems defined in Section 2. The
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Figure 1. Simulated indoor environment of the
robotic wheelchair.

State 3

State 2

Pr(turn left)=p3 Pr(move)=1-2p3 Pr(turn right)=p3

State 1

obstacle after
one move

obstacle after
one move

obstacle

obstacle

nothing

nothing

Pr(turn left)=p2 Pr(move)=1-2p2 Pr(turn right)=p2

Pr(move)=1-2p1

Pr(turn left)=p1

Pr(turn right)=p1

Figure 2. The finite state controller used to simulate
the wheelchair user’s behavior. In a normal behavior,
we have p1 = 1/10, p2 = 9/20, p3 = 1/2. In an abnor-
mal behavior, we have p1 = 1/3, p2 = 1/3, p3 = 1/2,
the user tends to move closer to obstacles.

environment is represented by a 20×20 grid (Figure 1), the
system state is the position of the wheelchair on the grid
(275 free positions) and its direction (8 orientations), the
system contains 2200 different states. We consider three
actions: move forward, turn left, and turn right. The turn ac-
tions result on a rotation of π/4. For the obstacle avoidance
problem, we consider only three observations: no obstacle,
obstacle after one move, and obstacle ahead. These obser-
vations are the same for both the teacher and the learner. For
the pathfinding problem, we consider that the wheelchair
observes presence/absence of obstacles in the 8 adjacent po-
sitions, we have then 256 observations, whereas the teacher
observes the exact state. The observations are aliased, but
they are deterministic, and the actions have stochastic ef-
fects: they succeed with probability 0.9, and have no effect
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with probability 0.1.

6.2 The obstacle avoidance problem

We have simulated the user’s behavior by means of the
Finite-State Controller described in Figure 2. In normal sit-
uation (state 1), the user moves forward with probability
0.8, and turn left or right, with probability 0.2. When an ob-
stacle one step away is observed (state 2), the user tries to
avoid it by turning left or right with probability 0.9, but still
there is a small probability, 0.1, that the user moves forward,
because he could be looking for something on the obstacle
(the obstacle is his goal). Last, if the obstacle is ahead (state
3), the user would turn left or right with probability 1, and
would never move in the direction of the obstacle. In abnor-
mal behavior, we suppose that the user chooses uniformly
her/his actions in states 1 and 2, but she/he still avoids obsta-
cles in state 3 by turning left or right with probability 1. If
we consider that the user can hit obstacles, the problem be-
comes no longer interesting since abnormal behavior could
be detected each time the user moves towards an obstacle.

To learn the user’s personal normal behavior, we ran-
domly generate the initial position of the wheelchair on the
grid, then we use the parameters of the environment (de-
fined as a POMDP), and the parameters of the policy (de-
fined as an FSC), to generate one action and one observation
at each time step, we repeat this process L times. We also
consider a reset point after every three actions.

Given that the rank of the estimated matrix P̂ is very sen-
sitive to the smallest variations in the probabilities estima-
tion, the number of discovered core tests can be very high
for the smallest values of L. So, to force the PPR learning
algorithm to keep a few core tests, the cutoff threshold ε

was set to 0.9. PPR learning algorithm does not require any
prior parameter besides ε.

We used the same training data to learn the parameters
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Figure 7. The RMSD error on predicting the user’s
actions in the pathfinding problem.
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of the corresponding finite controller with the Baum-Welch
algorithm. Given a prior model, the Baum-Welch algo-
rithm calculates beliefs on the hidden states after each step,
and uses this expectation as a basis to find new parameters
which better explain the observed actions. This operation is
repeated until a fixed point is reached. In general, the fixed
point corresponds to a local maximum. As a prior model for
the Baum-Welch algorithm, we considered a 3-state con-
troller with random transition and emission probabilities.

To test the accuracy of our learned policies, we simulate
a trajectory with length L = 100 steps, and at each step i, we
calculate for each next action a the probability P̂r(a|hi) that
the user will execute the action a according to the learned
policy model, and compare it to Pr(a|hi), the true proba-
bility given by the finite-state controller of Figure 2. We
calculate then the Root Mean Square Deviation (RMSD):

RMSD =

√√√√ 1
L×|A |

L

∑
i=1

∑
a∈A

(P̂r(a|hi)−Pr(a|hi))2

Figure 3 shows the different values of RMSD, averaged
over 20 trials, as function of the sampled data size. As ex-
pected, an accurate PPR model can be learned after only 40
episodes of 3 steps, with an average error of 0.04. The error
continues to decrease slowly as we use more training steps.
The FSC parameters are also learned quickly, but we must
wait until step 100 to get an error of 0.04. Figure 4 shows
the Kullback-Leibler (KL) divergence between the learned
policies and the true policy, we notice that PPR distributions
are slightly more accurate than FSC distributions.

The learned policies are used to distinguish the normal
behavior state from the anomalous behavior state. We de-
fine a small POMDP containing these two states, the actions
probabilities in every state are defined by the corresponding
policy, and the belief state is updated with Bayes function
(Equation 1). The initial belief state is set to (1/2,1/2),
and the belief state at a given step indicates the most likely
type of behavior that has been followed during the last a
few steps. We sampled 10 normal scenarios and 10 ab-
normal scenarios, and reported in Figure 5 the error rate
in classifying scenarios. Both PPR and FSC were able to
properly classify the behavior. We observed that for the
smallest training samples, PPR misclassifies the anomalous
behaviors because of a missing core policy test that does
not occur in the smallest samples and its probability was
automatically set to 0. Finally, Figure 6 shows how the de-
viations from a normal behavior to an abnormal behavior
could be quickly detected by using the learned PPR policy.
The user starts an anomalous behavior after step 75, and we
can detect it just a few steps later. After step 125, the user
comebacks to her/his normal motion, and the belief on the
normal state of the user increases gradually and becomes al-
most equal to 1 after step 160. Notice that this deviation is
not reflected in hitting obstacles, but just in the probabilities

of choosing the same actions (Figure 2).

6.3 The pathfinding problem

This problem is much more complex than the first one,
because we have now a larger set of observations, the trajec-
tory is longer, and more importantly, the user’s observations
do not match the wheelchair’s observations. The user has
a perfect observation of the state, whereas the wheelchair
can observe only the obstacles surrounding it. To make the
problem more challenging, we consider that in a given posi-
tion, the wheelchair will receive the same observation what-
ever its direction, so it can never realize if a turn action has
succeeded or not because the observation will be the same.
The user’s policy is described in Figure 2 in terms of (state,
action), the controller corresponding to this policy in terms
of learner’s local observations for each part of the itinerary
contains 20 states at least, most of them are aliased because
the direction was not included in the observations. There
are 5 reset points in the global path, each one corresponds
to a subgoal (usual destinations of the user like doors, tables
. . . ). Recall that the goal is not to find the shortest paths, but
to learn the user’s personal preferences. We repeatedly gen-
erated the trajectory from the start to the arrival positions
(where the first actions are often turn actions), and used
the stream of (local observations, actions) to learn approxi-
mately the underlying user’s policy, even though the user’s
behavior can never be reproduced exactly in this case. We
used a random model to initialize Baum-Welch algorithm,
but the number of states in the accurate model was given to
the algorithm. Figure 7 indicates the results on the RMSD,
averaged over 20 trajectories. We notice that in this prob-
lem too, PPR is learned with fewer training data compared
to FSC, and it converges quickly to a minimal error around
0.10. This error of 0.10, indicated in Figure 7 by the error
of the exact FSC, corresponds to the divergence between
the true policy of the teacher, and this policy as seen by the
learner, because of the difference between the two observa-
tion models (see Section 5.4).

For the last path (E → F), we considered that both
of the teacher and the learner use the same observation
model. In this case, the observation corresponds to the
presence or absence of an obstacle ahead the wheelchair,
and its direction, we have then 2× 8 observations. Based
on these partial observations, the teacher can follow dif-
ferent paths to move from E to F . Here again, we notice
that the divergence of PPR learning algorithm decreases
faster than FSC learning algorithm. Contrary to the pre-
vious paths, the final error (0.05) in this path is closer
to 0 because both of the teacher and the user have the
same model of observation. The error of PPR falls down
quickly after 15 repetitions because of a second core test
(〈obstacle ahead, direction north〉,〈turn left〉) that is recog-
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nized as independent, with ε = 0.1, only after the 15th rep-
etition.

7 Conclusion

Learning by imitation is very useful in situations where
the task of the robot involves interaction with humans. This
method can significantly accelerate the learning process,
compared to fully-autonomous methods. Moreover, the im-
itative learning can personalize the robot policies for every
new user and environment. Most of the previous work on
in this topic is concerned with deterministic, and/or fully
observable environments. In this paper, we presented a new
imitation learning method which is based on Predictive Pol-
icy Representations (PPRs). The advantage of PPRs, com-
pared to Finite-State Controllers, is that they are state-free,
and based completely on observable quantities (actions and
observations). We tested this model on two problems re-
lated to the assistive robotics. The first one is to learn a
user’s behavior regarding obstacles avoidance, and to rec-
ognize any deviation from this behavior in order to alert the
user, or to switch to an automated control. The second prob-
lem is to imitate the user’s motion policy to reach a given
goal in an indoor environment. In both problems, PPR out-
perform the Baum-Welch algorithm for FSC, and the corre-
sponding policies could be learned after a few repetitions,
without any prior knowledge on the environment, the tar-
get task, or the user’s preferences. Future extension of this
work will go in two directions: The first one is to bound the
divergence between the teacher’s policy and the learner’s
policy when they use different models of transition and ob-
servation. The other extension of this work is to consider
using Predictive Policy Representations in the problem of
reinforcement learning in partially observable domains.
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