
CAR PLATOONS SIMULATED AS A MULTIAGENT SYSTEM

S. Halĺe, B. Chaib-draa and J. Laumonier
Département d’informatique et de génie logiciel - Universit́e Laval

Sainte-Foy, QC, Canada, G1K 7P4
e-mail:{halle,chaib}@iad.ift.ulaval.ca

March 7, 2003

Abstract

Collaborative driving is an important sub-component of Intelligent
Transportation Systems ITS and it strives to create vehicles that are
able to cooperate in order to navigate through urban traffic by using
communications. In this paper, we address this issue by putting
emphasis on the simulation of a platoon of cars considered as more or
less autonomous software agents. To do that, we propose a hierarchi-
cal architecture based on three layers (guidance layer, management
layer and traffic control layer) which can be used for simulating a
centralized platoon (where a head vehicle-agent coordinates other
vehicle-agents by applying its coordination rule) or a decentralized
platoon (where the platoon is considered as a team of vehicle-agents
trying to maintain the platoon). Such hierarchical architecture is
sustained by a simulator that we describe in details. Finally we present
our first results concerning the first step of our project and which only
focuses on the first level (autonomous longitudinal control) where
only the relative distance and speed of the cars are actively controlled.

Keywords
Automated Highway System, Intelligent Transport System, Collabo-
rative Driving, Multiagent Driving Simulation

1 Introduction

Traffic volume is increasing everywhere in the world. To
address that, we generally build more and more roads in order
to meet the increasing traffic volume. In fact, simply adding
new roads is no longer the best solution because of the limited
land areas. An alternative is to develop techniques that increase
existing roads capacity and existing transportation systems
capacity [GL00]. This policy focuses on building fewer lane-
miles, while investing in Intelligent Transportation Systems
(ITS) infrastructure. It is shown that ITS may provide potential
capacity improvements as high as 20 percent [Sto01]. ITS can
be seen as a complex set of technologies that are derived from
information and computer technologies, as well as applied
to transport infrastructure and vehicles [LL02]. We can cite
as ITS components: advanced/transportation management,
advanced transportation information system, and commercial
vehicle operations. Among these components, there are
sub-components such as automobile collision avoidance and
electronic guidance system. These sub-components are gener-
ally sustained by some individual technologies as: electronic
sensors, wire and wireless communications, computer software
and hardware, GPS, GIS, etc. The main objectives of ITS
include: reduce environmental impacts, enhance safety, reduce
congestion, etc.

Collaborative driving is an important sub-component of ITS
and it strives to create vehicles that are able to cooperate in or-
der to navigate through urban traffic by using communications.
Simulation of driving agents as part of an ITS will enable us
to develop and test this technology, while making appropriate
amelioration to it. As canadian specific highways, climat and
laws will be simulated, our simulation results will help us to
prove the benefits of ITS for canadian roads. In this paper, we
address this issue by putting emphasis on the simulation of a
platoon of cars considered as more or less autonomous agents.

2 Platoons of Collaborative vehicles

Collaborative driving is a research domain that aims to cre-
ate automated vehicles which collaborate in order to navigate
through traffic. In this sort of driving, one generally forma
platoon, that is a group of vehicles whose actions on the road
are coordinated by the means of communications. The first
vehicle of a platoon is called the platoon leader and its role is to
manage the platoon and guide it on the road. Our work comes
within this framework and is a part of the Auto21 project
[Aut03], a member of the Canadian Networks of Centres of
Excellence, studying the automobile of the 21st century within
three levels of system functionality, examined in parallel. In the
first level (autonomous longitudinal control), only the relative
distance and velocity of the cars will be actively controlled in
a type of generalized and distributed “cruise control system”,
although drivers will still steer their vehicles.

In the second level of complexity (semi-autonomous
longitudinal-lateral control), the relative lateral and longitu-
dinal motion of each vehicle, relative to the one preceding it,
will be autonomously controlled, all the way up to the first
“lead car”, in a form of generalized car-train with a specially
equipped lead car and trained driver. Many such lead cars
would co-exist in a given urban center, each with its own
generic destination, much like a conventional train or bus, but
with the added freedom of “getting off the train with your car”.

In the level-3 version (fully autonomous longitudinal-lateral
control), the addition of cooperative steering, using the road
and the telematic infrastructure as a guide for absolute motion
control, will provide autonomous road-following capabilities.
All three levels of functionality will be addressed during the
conceptual design phase. This hierarchical decomposition

1

will define the various achievement levels that will guide the
evolution of the project. This will guarantee that a functional
system will result from the long-term project.

This paper presents our preliminary ideas on how we want
to address the cooperative driving in the context of this project.
For that, we have taken the road which consists to view the col-
laborative driving as a group of agents more or less autonomous
which try to drive without collision while communicating with
each other. To achieve such a system, we propose a hierarchical
architecture that we now describe in details.

3 Hierarchical Architecture for Collab-
orative Driving

3.1 ITS Components

Our architecture was inspired by Tsugawa’s architecture
[TST00] and other ideas coming mainly from the PATH’s
project [Pro03]. The resulting architecture has three major
layers: guidance layer, management layer and traffic control
layer, as indicated in figure 1.

Traffic Control Layer
(Road-side ITS equipment)

Manners, rules, ethic

Traffic real-time information

Management Layer

Coordination

Guidance Layer

Intelligent

Sensing
dynamics

acceleration

yaw

radar

vision (camera)

longitudinal control

lateral control

Internal Sensors

Vehicle Actuators

D
e
s
ire

d
s
ta

te

Intra-platoon

communications

(input)

S
e
n

s
in

g
d

a
ta

,

S
ta

te
v
a
ri

a
b

le
s

Vehicle

ControlVehicle

Internal

Perception

Navigation

Sensing
data

Linking

Networking

Planning

Inter-platoon

communications

(input)

Inter-platoon

communications

(output)

Intra-platoon

communications

(output)
Coordinating

actions

Modules

Sub-layer

Layer

intra-platoon

actions
inter-platoon

actions

DRIVING AGENT ARCHITECTURE

Cooperative

Plans

Road-vehicle communication criteria

Figure 1: Hierarchical Architecture for Collaborative Driving.

Theguidance layer has as functions to sense the conditions
and states ahead and around the vehicle and to activate the
longitudinal or the lateral actuators. For the sensing systems,
inputs come from sensors for speed, acceleration, raw rate,
machine vision, etc. This layer also outputs sensing data
and vehicles state variables to the vehicle guidance layer and
then receives steering and vehicles velocity commands from
the same guidance layer. These considerations have lead us
to divide this layer inintelligent sensing and vehicle control
sub-layers as depicted in figure 1.

The management layer determines the movement of each
vehicle under the cooperative driving constraints with the
data from (a) the guidance layer, (b) neighboring vehicles
through the inter-vehicle communication, (c) the leader vehicle
through the specific inter-vehicle communication leader-to-
vehicles, (d) the traffic control layer through the road-vehicle
communication. To determine the movement of each vehicle
under the cooperative constraints, this layer needs to reason
on the place of the vehicle in the platoon when this platoon
remains the same (intra-platoon coordination), and its place
in a new platoon when this platoon changes (inter-platoons
coordination). The first type of coordination is handled by the
networking sub-layer and the second by thelinking sub-layer.
Generally, the task of thelinking sub-layer is to communicate
with the traffic control layer to receive suggestions on actions
to perform. Resulting from this suggestion the agent’s linking
module will try to coordinate inter-platoon actions like:
join, split and lane-change. This layer is also responsible
of maintaining a safe inter-platoon distance which will also
define a desired velocity and inter-vehicle spacing for platoon
members. This will be maintained using thenetworking
module, which is responsible of the intra-platoon coordination
and thus, the platoon formation. Finally, the management layer
should also maintain a platoon formation plan, a task which is
devoted to theplanning sub-layer.

The traffic control layer is a roads-side system composed
of infrastructure equipments like sign boards, traffic signals
and the road-vehicle communications as well as a logical part
including: social laws, social rules, weather-manners and other
ethics (more specific to Canada), etc.

The implementation of those layers will be done using the
two major architectures we are studying for the platoon grouped
driving agent system, which are a centralized and a decentral-
ized architecture.

3.2 How It can be used for Platoons

3.2.1 Centralized Platoons

First, centralized architectures for a driving agent system
will be presented. A centralized architecture can be defined
either for the multi-agent interactions within a platoon or
for the interactions between each platoons. Centralized
architectures imply that a head agent will coordinate other
agents by applying its coordination rules. As shown in figure
1, the intra-platoon coordination is done using thenetworking
module, while the linking module is used for inter-platoon

coordination, in an architecture inspired by [TST00]. In
this way, each coordination level can be implemented with a
different model without disturbing the other.

At the platoon level: The focus is on the intra-platoon
coordination, which is centralized through the platoon’s leader,
representing the head vehicle. Thus, the leader is the one who
plans for the whole platoon and then prescribes inter-vehicle
spacing for every member of its platoon. In this centralized
model, split and merge task within a platoon are handled by the
leader’s networking sub-layers which commands inter-vehicles
spacing to create or close a gap between vehicles. In this way,
the merge and split tasks are “transparent” to the follower
agents that do not have direct contacts with each others but
only with the leader. The leader agent will also try to define
behaviors for each platoon member in collaboration with the
networking sub-layer. Such relations between behaviors and
the networking layer is useful to coordinate split and merge
tasks or plans that would be more specific to a vehicle, in a peer
to peer interaction. At last, the task of a follower consists in
maintaining a prescribed constant spacing from the preceding
vehicle.

At the Highway System level: The centralization of inter-
platoon coordination is done using a road-sidetraffic control
layer as shown on top of figure 2, which was inspired by a
road-side system used in the PATH project [Ban21]. This con-
troller is in charge of a specific part of the highway where it will
regulate its traffic. Thus, it receives real-time information about
vehicles density and velocity profile on the road and determines
the entry flow rate for a specific neighborhood and guides pla-
toons’ velocity and maximum platoons’ size. In the figure 2
representation, platoon 1 (P1) and 2 (P2) send informations
about their formation to the traffic controller using theirlink
layer, in an asynchronous call. After it’s deliberation, the traf-
fic control layer will send back a guide for the platoon velocity
or a task command, which is explained next. Thus, the traffic
control also determines the required actions by vehicles (when
applicable) at every lane in the form of lane change, merging or
splitting task directions. When the traffic control layer comes
to a consensus, i.e., an agreement on a specific task to be ex-
ecuted, it has to coordinate on that task. In the case of figure
2, the traffic layer will command a higher velocity to the front
(L1, F1, F2) of platoon 1 and a lower velocity to the back (F3,
F4) , creating a merging space. This is followed by a command
to platoon 2 to steer right until it is aligned with follower 2.

3.2.2 Decentralized Platoons

As an alternative to the previous approach, we consider
a decentralized approach where the definition of modules’
roles presented in the introduction of section 3.2.1 remains the
same but their implementation is different for a decentralized
coordination. Thus, the definition of a leader is pretty much
absent and the existence of atraffic control layer is not required.

At the platoon level: In a decentralized platoon perspective,
team-work theories might be used to maintain the platoon while
giving each agent the same autonomy. The theory on multi-
agents teamwork, explained in [PT02b], can be applied to our

L
1

F
1

F
2

F
3

F
4

ROAD SIDE INFRASTRUCTURE

TRAFFIC CONTROL LAYER

L
2

Command: Steer Right

Command: Velocity = v+10
P1 Status

P2 Status

Command: Velocity = v-10

TRAFFIC FLOW

Figure 2: Centralized Decision Making Using a Traffic Control
Layer.

platoon, where it is considered as a team and vehicle drivers
as agents. Using this approach, the leader is seen as the team
captain and the followers are assigned roles within the platoon.
Each vehicle keeps its autonomy as there are local and team
goals, but the platoon benefits from everyone’s knowledge and
capabilities. Tambe’s COM-MTDP model [PT02a] presents
a coordination architecture to support cooperative plans
within platoon members allowing thus to maintain a flexible,
persistent platoon formation. Theory on cooperative planning
is defined in [GK96] where the definition of a Full Shared
Plan (FSP) can be used to plan a platoon formation that will
respect a given inter-vehicle spacing and velocity. But its most
useful application is to coordinate merge and split tasks that
require different vehicles’ expertise, defined by their position
in the platoon. Inspired by a distributed model, well known in
networking, the teamwork for agents has the same benefits on
a computing level, in addition to a powerful knowledge sharing.

At the Highway System level: To create a decentralized ar-
chitecture for our inter-platoon coordinations, we plan to con-
sider mobile agents. Those agents create a merging interface
through each vehicle’s linking layer and optimize the commu-
nications by minimizing the round trips usually necessary to
come to mutual intentions between platoons. Therefore, a mo-
bile agent acting on the behalf of a platoon would coordinate
itself with others using less bandwidth, since its coordination is
done locally. In our application, a mobile agent carries infor-
mation on the leader and its platoon formation relative to the
current type of coordination. The mobile agent coordination
model we are considering is ablackboard model for indirect co-
ordinations [GC97]. Applying this model to collaborative driv-
ing, the previous organisation in neighborhoods will be kept.
Each neighborhood has its own blackboard which resides on the
biggest, previously elected, platoon. Platoons’ representatives
will locally coordinate themselves on this platoon blackboard
in an asynchronous way. This is presented in figure 3 where
a mobile agent representing platoon 2 (M.A.2) is sent to the
blackboard situated on platoon 1. There, it coordinates itself
with platoon 1 representative (M.A.1) using information from
other agents that passed by, stored on the blackboard . From
their coordination, M.A.1 will command it’s platoon velocity
changes to create a merging space. Then, M.A.2 comes back to
platoon 2 and commands to steer right when merging space is
available. Thus, mobile agents benefit our communications as
they can coordinate themselves with available agents and leave

information for upcoming ones on the blackboard without hav-
ing to wait for others.

P2

P1

L
1

F
1

F
2

F
3

F
4

L
2

Blackboard

M.A.2

(Steer R.)

M.A.2

(P2 stat.)

C
oord

M.A.1

(P1 stat.)

TRAFFIC FLOW

Figure 3: Decentralized Decision Making Using Mobile
Agents.

4 Simulation

In the previous section, the architecture for a vehicle driv-
ing agent was defined and going from theory to practice, it’s
implementation in a simulated environment will be defined in
this section. First the simulator’s engine, around which vehicle
shapes and dynamics are simulated will be explained. Then the
agent framework used to implement our driving agent architec-
ture will be defined in section 4.2 with the tools and developing
guidelines it offers.

4.1 Automated Highway System Simulator

We now present the Automated Highway System (AHS)
simulator developed as part of our multiagent approach.
Similar to traffic simulators like Carnegie Mellon’s SHIVA
[SHT97], our simulator, called HESTIA (a screen shot of it is
presented in figure 4), aims a lower level of vehicle simulation,
as its main purpose is to create an environment for Intelligent
Transport Systems (ITS) developing and testing. To do so, it
simulates a highway environment, with vehicles represented as
3D shapes, which are using simulated dynamics and sensors to
retrieve information from the environment, as shown in figure
5. Here, the driver agent presented in section 3 uses sensors,
controller and a communication module to interact with the
simulated environment. Shapes, data and dynamics modules
are also used to complete avehicle package that interacts
with other vehicles in the 3D environment. Before we explain
the simulator’s components in details in the following sub-
sections, let us describe its simulator’s modelling language.

Agents’ environment: The agents’ environment was built
from JAVA 3DTMtechnology, which brings a 3D environment
which is easy to use and in that our agents can easily evolve.
First, the 3D environment offers a very pleasant user interface
that is completely manageable. 3D objects can then be
dynamically altered, assigned different behaviors and picked
on their contour in real-time. Using different object behaviors
we can easily represent different type of road conditions and
their resulting friction, as well as an object’s behavior on such
events as a collision.

Sensors: Using the previous environment, JAVA 3DTM en-
ables us to implement sensors by using theirpicking tool on 3D
objects. This tool can provide informations about a vehicle’s

Figure 4: Vehicles platoon formation in HESTIA 3D Simulator.

Driver Agent

Vehicle's
3D Shape

Sensors

DynamicsVehicle Data

Communication
Module

Controller

3D
environment

Vehicle Package

Represents Represents Commands

UsesRepresents

UsesUses Uses

Defines

DefinesDefines

Uses

Uses

Figure 5: HESTIA Vehicle Simulation Environment.

surrounding objects’ distances detected in the 3D environment.
Since vehicles have apickable behavior, other vehicles’
sensors detect them and can then access available information
about the sensed vehicle. Those sensors return a very precise
information about the sensed object’s shape which can then
be altered considering the sensor’s specifications. Notice
that the simulator also plays the role of an internal-sensor by
providing information based on the vehicle’s specifications
and dynamic information, as the engine status for example.
These informations are taken from figure 5’sVehicle Data box .

Dynamics: The dynamics engine simulates the vehicle’s dy-
namics using data on the vehicle’s engine, shape and tires, from
theVehicle Data box and the road conditions from the3D en-
vironment box. These informations are transformed, using the
current steering and throttle level, in angular forces applied on
the vehicle. Putting all those forces together gives us the current
acceleration, speed, heading and position. The latter heading
and position are sent to the 3D engine to change the vehicle’s
appearance.

4.2 Simulator’s Multi-Agent Framework

Over the previously defined simulator is the agent frame-
work, which was also developed in JAVATM. This framework
is based on a set of tools required by agents to evolve in an
automated highway environment. We already defined the tools
to sense on the environment, as part of the 3D engine, and to

act on the environment, as part of the dynamics engine, wihch
are the two principal properties that define an agent, as pre-
sented in [RN95]. Thus, starting from a simulator that responds
to an agent’s basic needs, the framework was completed using
JACK Intelligent AgentsTM, a JAVA based programming lan-
guage that extends agent-oriented concepts. To complete this
strong framework, our own communications module was de-
veloped , so we could control and simulate different communi-
cation devices as used in platoons (radio or others). The global
view of this framework is presented in figure 6 where the agent
architecture from section 3 is implemented in accordance with
the following agent framework, using an interface with the en-
vironment formed by sensors and controller.

Interface

Automated Highway System

Multi-Agent Framework

Hierarchical Agent

Architecture

ControllerSensors

Figure 6: Global view on the simulator’s multi-agent frame-
work.

4.2.1 Agent Modelling Language

The agent modelling language used as part of this AHS sim-
ulation framework is mainly based on JACK, a programming
language related to the BDI agent model [RG95]. Useful
tools from IBM’s ABLE have been added to this framework
forming thus a powerful building toolkit. This toolkit has been
completed with an inter-agent communication module which
is related to our AHS simulator.

JACK Intelligent AgentsTMextends six major agent-oriented
concepts: agents, capabilities, events, plans, knowledge bases,
and resource and concurrency management. It even includes
a model for agent teams programming. All of these concepts
are implemented using five main classes that are extended
for specific usage: plan, event, beliefset, capability, and task
manager. The first three will be described, making reference to
their usage in our simulator.

A plan is used to define a sequence of actions that an agent
can do when an event occurs. In our case, plans will be used
in the Planning sub-layer of figure 1, mostly for tasks like
merging, splitting and lane changes. Different plans will then
be declared for different event types, and plans handling the
same events will be differentiated usingrelevance andcontext
criterions defined in JACK language’s documentation. More-
over, plans are closely related to event types and definitions,

since they occur when an event arise. JACK offers a number
of event models for different needs, represented as:internal
stimuli, external stimuli, and motivations. These events will
then be used in multi-agents communication, mostly for intra-
platoon coordination. In addition events will arise from the
lower levels of our agent architecture in figure 1, as the sensors
will inform planners about sensed vehicles or situations. Then,
to determine an agent’s environmental context, Jack provides a
data structure called aBeliefset, which enables our agents to
collect information on traffic, platoon formation, and platoon
members and to infer on it.

In addition to the BDI extension, JACK provides an
extension to support Team Oriented programming, called
SimpleTeam. Team Oriented programming is a sort of agent
oriented programming where agent collaboration is specified
from the abstract viewpoint of the group as a whole [Cob02].
This extension supports shared plans and enables us to easily
implement the theory on platoons represented as teams,
presented in section 3.2.2.

ABLE, the complementary toolkit to our agent framework,
was created for agent building purpose and it offers a variety of
agent’s artificial intelligence tools in the way of Java Beans. For
the moment, neural network tools from Able librairy have been
used as part of our agent guidance layer to create a learning
brake and accelerator controller presented in section 5.2.

4.2.2 Inter-Agents communications

The inter-agents communications are related to the environ-
ment simulator and to the multi-agent framework. Thus, to sim-
ulate communications within an AHS environment, we should
take into account: the environment properties, the agents’ vehi-
cle properties and the communication system. This is done by
the communication module in collaboration with the communi-
cation manager which is in charge of dispatching the messages
(as shown in figure 7). The communication module, part of
the simulated vehicle shown in figure 5, is used by agents to
communicate between them. These communications are done
in order to coordinate themselves or to share results or infor-
mation. The messages are then sent by the agent’s communica-
tion module to the communication manager which dispatches
them using the specification of the currently simulated commu-
nication system. Depending on the these specifications and the
message type launched by the agent, the manager determines
the agent(s) that is(are) in the right to receive the message, and
send it within an appropriate simulated time. For example, a
radio communication simulator will determine agents in the ra-
dius of the current broadcast, using the 3D engine, and will send
the message to those agents in a radio communication interval.

5 First Experiments

We are currently in the first phase of this project devoted to
collaborative driving and this phase focuses only on the first
level (autonomous longitudinal control) where only the rela-
tive distance and velocity of the cars are actively controlled.
The longitudinal control consists in finding the acceleration
or braking of a vehicle, called the following vehicle, in order

3D AHS Environment

Communication Manager

Driving Agent Transmitter

«Uses» Communication Module

Driving Agent Receiver

«Uses»

message
dispatched

message

Figure 7: Agent Communications Simulation.

that it follows another vehicle, called the preceding vehicle,
with security and without delay. To achieve this first phase,
the guidance layer of our arhcitecture, presented in figure 1,
was implemented using Tsugawa’s longitudinal control func-
tion [TKT+01]. More precisely, we have experimented two
versions: The first one is the direct implementation of the func-
tion, whereas the second is the evaluation of the function by
a neural network. Both methods use the simulated laser sen-
sor as external sensor to evaluate the inter-vehicle distance and
the difference of velocity between both vehicles. Moreover, an
internal sensor is used to get the current velocity.

5.1 Using a Longitudinal Control Function

A longitudinal control function calculates the commanded
velocity of the following vehicle according to the current ve-
locity of the preceding one, the relative velocity and the inter-
vehicle distance. It includes also a minimal inter-vehicle dis-
tance. The commanded velocity is given by the following :

vc = vp + k1(−δv) + k2(Lr − Lm)

with
vc : the commanded velocity of the following vehicle.
vp : the current velocity of the preceding vehicle.

k1 = m1|Lr−Lm|
|Lr| , andk2 = m2k1

δv : the relative velocity between the following vehicle and
the preceding vehicle. Ifdv is positive, the both vehicles are
getting closer.
Lr : the minimal inter-vehicle distance.
Lm : the measured inter-vehicle distance.
m1, m2 : control gains. The tests show that their sign must be
the opposites to give correct results. One of the best solution
is m1 = 1 andm2 = −1. Some more precise tests must be
performed to have a better solution.

The figure 8 shows the result of such a function: the com-
manded velocity is calculated according to the relative velocity
and the inter-vehicle distance. In this example, we assume
that the preceding vehicle velocity is equal to zero. It shows
that as the distance with the precedent vehicle gets higher, the
acceleration of the current vehicle gets higher. Moreover, the
closest the following vehicle gets with the precedent one, the
more important is its braking. We can see in the figure 8, that
the commanded velocity is zero when the distance is equal to
the minimal inter-vehicle distance (one meter in this example).
This means the following vehicle velocity must be the same as
the preceding vehicle to keep the minimal distance.

f(x,y)
0

-10
-5

0
5

10
Relative velocity 0

2

4

6

8

10

Inter-vehicle distance

-40
-20

0
20
40
60
80

100
120
140
160
180

New Speed

Figure 8: The new velocity evaluation function.

However, since the agent can only act on the vehicle’s ac-
celeration and braking, the new acceleration must be calculated
by the velocity derivative. Obviously, as we can see in figure 8,
this function calculates a theoretical commanded velocity nec-
essary to keep the minimal inter-vehicle distance. That is why,
in some case, the velocity seems to be too high but this function
is evaluated several times per second and the next calculated
velocity will be smaller.

5.2 Evaluation of the Longitudinal Control
Function by a Neural Network

The second implementation is based on a neural network
which evaluates the previous function. The learning and testing
data have been generated with the following parameters :
from 0 to 25 m/s with a step of 0.5 m/s for the velocity of the
following vehicle, from−10 to 10 m/s with a step of 0.5 m/s
for the difference of velocity and from 0 to 10 meters with a
step of 0.5 m for the inter-vehicle distance.

Although the neural network is just a function evaluation,
it reacts appropriately to the situations. However, since it
is an evaluation, it will not work as well as the function
in the extreme cases. Despite this weakness, one strength
of the neural network is the capacity to learn from real situation.

The longitudinal control has been implemented with an eval-
uation function based on a robotic control and a neural network
trained with simulation data. These approaches gave very sat-
isfactory results for following vehicles, part of the centralized
platoon approach. The next step will focus on the coordination,
moving through a decentralization of the platoon.

6 Conclusion

This paper presented a complet simulation environment
based on agents driving vehicles in platoon formation. This
kind of simulator offers many advantages, both on a developing
side and a marketing side. First, simulations enable us to test

implementation of different driving agents models without
using real cars and roads. Different simulation scenarios
can be easily tested and are totaly mangeable from vehicle
types to road conditions. The results it gives are very reliable
and help us to choose from different theories and to easily
implement learning algorithms. On a marketing point of view,
the simulations of an ITS infrastructure based on the canadian
highway system help us to prove the benefits of this technology
on the traffic flow, car accidents, highway capacity and more.
Specific to the canadian climat, the environment simulated in
HESTIA will demonstrate the application of ITS to snowy
roads and the type of infrastructure it needs to be reliable.

As we presented different centralized and decentralized mod-
els for cooperative driving in platoon formations, there is a lot
of work to come to implement and test the best theories. The
first step will be intra-platoon coordination, where a centralized
leader will be compared to team formations. The many simula-
tions to come will tell us which degree of autonomy should be
given to each vehicle member of a platoon and the best strate-
gies to take on merge and split platoon tasks. Many scenarios
will be taken into account using the simulator, to make sure our
agents will react well to every eventuality.

7 Acknowledgments

This work has been carried out as part of the Automobile
of the 21st Century (Auto21) project supported by the Govern-
ment of Canada through the Networks of Centres of Excellence
(NCE).

References

[Aut03] Auto’21. http://www.damas.ift.ulaval.ca
/projets/auto21/fr/index.html. Technical report,
2003.

[Ban21] S. Vahdati Bana. Coordinating automated vehi-
cles via communication. Ucb-its-prr-2001-20, Uni-
veristy of California, Berkeley, September 20021.

[Cob02] M. Coburn. Simpleteam technical brief. Technical
report, Agent Oriented Software, February 2002.

[GC97] F. Zambonelli G. Cabri, L. Leonardi. Coordination
in mobile agent applications. Technical report no.
dsi-97-24, Dipartimento di Scienze dell’Ingegneria
Universit di Modena, October 1997.

[GK96] B. J. Grosz and S. Kraus. Collaborative plans
for complex group action.Artificial Intelligence,
86(2):269–357, 1996.

[GL00] S. Ghosh and T. Lee.Intelligent Transportation
Systems: New Principles and Architectures. CRC
Press, 2000.

[LL02] W. Lin and H. Leung. Comparison of vehicle de-
tectors used in intelligent transportation systems.
Technical report, NCE, Auto’21, 2002.

[Pro03] PATH Project.http://www.path.eecs.berkeley.edu/.
Technical report, 2003.

[PT02a] D. Pynadath and M. Tambe. The communica-
tive multiagent team decision problem: Analyzing
teamwork theories and models.Journal of AI Re-
search (JAIR), 16:389–423, 2002.

[PT02b] D. Pynadath and M. Tambe. Team coordination
among distributed agents: Analyzing key team-
work theories and models. InProceedings of the
AAAI Spring Symposium on Intelligent Distributed
and Embedded Systems, 2002.

[RG95] A. S. Rao and M. P. Georgeff. BDI-agents: from
theory to practice. InProceedings of the First Intl.
Conference on Multiagent Systems, San Francisco,
1995.

[RN95] S. J. Russell and P. Norvig.Artificial Intelligence:
Modern Approach. Prentice Hall, 1st edition, Jan-
uary 1995.

[SHT97] R. Sukthankar, J. Hancock, and C. Thorpe.
Tactical-level simulation for intelligent transporta-
tion systems.Journal on Mathematical and Com-
puter Modeling, 1997. (To appear).

[Sto01] R. R. Stough.Intelligent Transportation Systems:
Cases and Policies. Edward Elgar Pub. LTD: Chel-
tenham, UK/Northampton, MA, USA, 2001.

[TKT+01] S. Tsugawa, S. Kato, K. Tokuda, T. Matsui, and
H. Fujii. A copperative driving system with auto-
mated vehiclues and inter-vehicle communications
in demo 2000. InProceedings of the IEEE Intelli-
gent Transportation Systems Conference, 2001.

[TST00] S. Kato T. Sakaguchi, A. Uno and S. Tsugawa. Co-
operative driving of automated vehicles with inter-
vehicle communications. InProcs. IEEE Intelligent
Vehicles Symposium 2000, pages 516 – 521, Dearb-
sorn, MI, USA, October 2000.

