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Résumé

Stochastic filtering refers to an issue for estimating the latent variables from the ob-
servations using a stochastic model. Since it was developed in early 1940s, filtering has
been one of the most practical tools in the science and engineering field. One of the best
known filtering algorithms is a class of Gaussian Filters. However, its gaussian assumption
for posterior distribution severely affects their estimation performance. A class of Particle
Filter is an alternative way to approximate arbitrary posterior distribution using Sequen-
tial Monte Carlo Sampling framework. Current studies have shown that the Particle Filter
scheme suffers weight degeneracy problem since sequential importance sampling. Hence I
propose new methods based on nonparametric technique to overcome the drawbacks in the
existing filters. More specifically, I will combine different sampling methods with adaptive
mechanism to improve the accuracy. Then I will design a better nonparametric proposal
distribution for solving the underlying weight degeneracy problem. I will also consider baye-
sian nonparametric filtering and the flexibility that it offers. In this context, I will design
a general filtering and smoothing framework for bayesian nonparametric models. Finally,
due to the fact that all the techniques for state estimation are the foundation of nonlinear
control problems, I will incorporate the nonparametric filtering methods into nonlinear
controller design and apply it in the real robot system.
Keywords : State estimation, gaussian filter, Particle Filter, nonparametric method,
nonlinear control.
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Introduction

The foundation of understanding the dynamic phenomenon is to estimate its true state.
State estimation problem is actually a filtering problem which uses the history of observation
sequence to estimate the underlying hidden state sequence. It could be widely used for a
large number of real applications in science and engineering, such as economics, biostatistics,
stochastic signal processing, robot localization and navigation, etc. Hence, accurate and efficient
state estimation is very crucial to analyze the properties in the complicated dynamic systems.

During the past decades, there have been a great number of filtering algorithms for state
estimation problem. The most classic algorithm is a class of gaussian filters which estimate
the posterior distribution by a gaussian distribution. Kalman Filter [Kalman, 1960] is the best-
known optimal filter for linear and gaussian systems. But Kalman Filter is relatively theoretical
since most real systems are nonlinear and/or nongaussian. Hence, to efficiently solve state es-
timation problems in practice, Extended Kalman Filter [Jazwinski, 1970] was developed by
linearizing the nonlinear system to satisfy the Kalman Filter Framework. But due to the fact
that Extended Kalman Filter approximates the posterior distribution as a gaussian distribu-
tion, it works terribly when the true posterior distribution is highly nongaussian. Gaussian
Sum Filter[Daniel et al., 1972] applies a mixture of gaussian distributions to approximate the
posterior distribution, which works like a number of Extended Kalman Filters in parallel. Ho-
wever, both Extended Kalman Filter and Gaussian Sum Filter have to calculate the Jacobian
matrices with high computational cost. Therefore, the derivative-free Unscented Kalman Filter
[Simon et al., 1995; Eric et al., 2000] was designed using deterministic sigma points directly to
approximate the posterior density in Kalman Filter framework. Even though there has been a
lot of application using this gaussian filter class, the gaussian assumption will deteriorate the
performance when the true distribution is totally nongaussian.

Monte Carlo sampling methods are the alternative algorithms to approximate the nongaus-
sian posterior distribution by stochastic sampling. Sequential Monte Carlo Sampling method
[Jun et al., 1998; Arnaud et al., 2000; Olivier et al., 2007] is the one of the most efficient al-
gorithm for filtering problem, and the resulting filter is a class of Particle Filter. Sequential
Importance Sampling Particle filter [Zhe, 2003] is a popular framework to estimate the impor-
tant region of posterior distribution recursively. However, weight degeneracy problem in this
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algorithm would heavily affect the approximation performance since the variance of the par-
ticle weights will be very large after a few iterations [Zhe, 2003; Caglar et al., 2011; Fred et al.,
2011; Samarjit, 2010]. Sampling Importance Resampling Particle Filter [Arnaud et al., 2000;
Deok-Jin, 2005] alleviates weight degeneracy problem with a Resampling step after Importance
Sampling at each time step. But this Particle Filter just reduces the degeneracy problem ra-
ther than solving it due to the fact that Resampling step actually introduces high correlation
between particles after a few iterations through replicating the particles with high important
weight, which is the root why this Particle Filter framework works poorly in high dimensional
systems [Fred et al., 2011].

As mentioned before, there still exists serval difficulties in filtering problem, especially when
the dynamic system is high-dimensional and nongaussian. Bayesian Nonparametric Technique
is a promising strategy that could tackle the estimation problem for more general dynamic sys-
tems. Therefore, the aims of this proposal is to apply Nonparametric Technique to estimation
problem with high accuracy as well as acceptable computational cost. Firstly, we attempt to
take advantage of sequential Monte Carlo and MCMC to improve the estimation accuracy by
combining them together with adaptive scheme. Secondly, to overcome the underlying weight
degeneracy problem in the Particle Filter, we design a good proposal distribution using nonpa-
rametric methods. Thirdly, because dynamic state space model is unknown in the real world,
we try to develop a filtering framework for nonparametric dynamic system so that the proposed
algorithms could be applied for a more general state estimation problem. Then, we propose to
estimate the states of nonparametric dynamic model with smoothing rather filtering since the
performance of smoothing is better [Stuart et al., 2010; Carlos et al., 2010]. Finally, control
problem for nonlinear systems is actually the final goal [Nadine et al., 2007]. In this context,
we plan to incorporate the nonparametric particle filter into a nonlinear controller in order to
increase the control robustness [Villiers et al., 2011; Stahl et al., 2011].

Here is the outline of this research proposal. In Chapter 2, probabilistic inference tasks
in temporal dynamic system is briefly introduced with a general state space model, then we
deviate how to infer the target density using recursive bayesian estimation for filtering. Chapter
3 is the foundation of Bayesian Filtering theory starting from Kalman Filter to Particle Filter.
After we illustrate the shortcomings of the existing filters, Chapter 4 will be used to propose
my objectives and goals. Then the current research works following research goals are shown in
Chapter 5. In Chapter 6, I show my work plan and time schedule. Finally, there is a conclusion
for this proposal in Chapter 7.



2

Probabilistic Inference in Temporal
Dynamic System

Probabilistic inference involves such a class of problems : according to the history of obser-
vable information, we attempt to find an efficient method to estimate the present, predict the
future and assess the past. There are a great number of its applications which are widely used
in industry, transportation, biomedicine, communication and so on. For example, the task is
to evaluate the blood sugar level for a patient. By using the past blood sugar information, the
nurse try to interpret the present level and predict its change in order to set the future medical
plan. However, the blood sugar changes rapidly over time. Hence, before estimating the current
and future values, we have to model the dynamic phenomena first.

2.1 Modeling for Temporal Dynamic System

Without loss of generality, the following dynamic state space model of a nonlinear system
is considered for inference problem :

xt = a(xt−1,wt−1) (2.1)

yt = b(xt,vt) (2.2)

where at time t, xt is the hidden system state vector, wt is the system noise vector, yt is the
observation vector, vt is the observation noise vector.

In the state equation (2.1), current state vector xt is generated by a nonlinear function
a of previous state xt−1 and system noise vector wt−1. In the observation equation (2.2),
current observation vector yt is obtained by a nonlinear function b of current state xt and
observation noise vector vt. Hence, by assuming the probability distribution of system noise
wt and observation noise vt, the state and observation equation actually represent transition
density p(xt|xt−1) and likelihood density p(yt|xt) respectively.

6
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Additionally, we assume that state transition and observation process satisfy first-order
Markovian, i.e., the current state vector xt only depends on the last state vector xt−1, which
means that the conditional probability of current state xt given all the past states x0:t−1 =
{x1,x2, · · · ,xt−1} is equal to the transition density p(xt|xt−1) ; the current observation vector
yt is only determined by the current state vector xt, which illustrates that the conditional
probability of current observation yt given all the states x0:t and all the past observations
y0:t−1 is equal to the likelihood density p(yt|xt).

According to the Markovian assumption, the state space model is actually the functional
form of the hidden markov model, which consists of initial density p(x0), transition density
p(xt|xt−1), and likelihood density p(yt|xt).

· · · xt−1 p(xt|xt−1) xt p(xt+1|xt) xt+1 · · ·

p(yt−1|xt−1) p(yt|xt) p(yt+1|xt+1)

yt−1 yt yt+1

Figure 2.1: Hidden Markov Model.

2.2 Inference in Temporal Dynamic System

After setting up the general temporal model, we could classify the inference task into four
parts [Stuart et al., 2010; Heijden et al., 2004] :

Filtering the task is to evaluate the posterior distribution p(xt|y0:t). Filtering is also called
state estimation.

Prediction the task is to evaluate the posterior distribution p(xt+k|y0:t) for k > 0 over the
future state.

Smoothing the task is to evaluate the posterior distribution p(xk|y0:t) for 0 ≤ k < t over
the past state. Smoothing offers a better estimation of the state than filtering since it
incorporates more observation information, but it’s an off-line method.

Most likely explanation the task is to find the most likely state sequence given the observa-
tion to date. The method to tackle this problem is the so called Viterbi algorithm which
is also an off-line technique.

Additionally, there is a modeling task - learning. The goal is to learn the state space model
or hidden markov model using the observation sequence.

Here we mainly focus on the filtering task. There are at least two main reasons. Firstly,
the states themselves in the real world are very important for evaluating the dynamic systems.
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For example, a mobile robot infers where it is by using filtering techniques to make the further
path plan. Secondly, the states are estimated online and treated as a feedback to the nonlinear
controller in order to improve the transitional and steady performance of close loop control
system. For example, the position and orientation states in a mobile robot are estimated to
control the transitional and rational velocity so that the tracking error could be reduced.
Therefore, it is of importance to explore the different kinds of filtering algorithms for the real
engineering applications.

2.3 Recursive Bayesian Filtering

To be able to efficiently calculate the posterior distribution of the hidden state sequence,
the first intuition is to use Bayes Rule and Markov assumption to transform p(xt|y0:t) into the
following form that could be computed recursively.

p(xt|y0:t) =
p(y0:t|xt)p(xt)

p(y0:t)

=
p(yt,y0:t−1|xt)p(xt)

p(yt,y0:t−1)

=
p(yt,y0:t−1,xt)p(xt)

p(xt)p(yt|y0:t−1)p(y0:t−1)

=
p(yt|y0:t−1,xt)p(xt|y0:t−1)p(y0:t−1)

p(yt|y0:t−1)p(y0:t−1)

=
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
(2.3)

where

p(xt|y0:t−1) =

∫
p(xt|xt−1)p(xt−1|y0:t−1)dxt−1 (2.4)

p(yt|y0:t−1) =

∫
p(yt|xt)p(xt|y0:t−1)dxt (2.5)

the equation (2.4) represents a one-step prediction of the next state and the equation (2.5)
updates the prediction with new observation.

Generally, the calculation of the integrations in the equation (2.4) and equation (2.5) deter-
mine whether the filtering problem could be solved or not, and the integrations largely depend
on the characteristics of dynamic systems which classify the existing filtering methods. For the
linear and gaussian systems, all the probability distributions mentioned are multi-variable gauss
distributions obtained by linear transmission in the state-space model. Hence, there exists an
integrable optimal form of p(xt|y0:t), which is the well-known Kalman Filter. However, for most
applications in the real world, the dynamic systems are nonlinear and non-gaussian, which leads
to the fact that the computation of equation (2.4) and equation (2.5) are not feasible. Hence,
the numerical approximation methods have been widely developed for the past decades. The
following chapter will introduce serval typical filtering algorithms for state estimation problem
in the bayesian framework.
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Background and State of the Art

3.1 Gaussian Filter

Stochastic filtering refers to an issue for estimating the latent variables from the observable
phenomena using a stochastic model. Since it was developed in early 1940s, filtering has been
one of the most practical tools in the science and engineering field.

One of the best-known filters is Kalman Filter [Kalman, 1960], which is an optimal minimum
mean squared error estimator for linear and gaussian systems. However, due to the fact that
most of the dynamic systems in the real world are nonlinear and nongaussian, estimation
analysis by Kalman Filter is intractable. In order to solve estimation problems in practice,
from mid 1960s, a great number of extensions have been investigated to approximately estimate
the hidden states by modifying the Kalman Filter framework. The classic method is Extended
Kalman Filter [Jazwinski, 1970], which linearizes the nonlinear system using Taylor expansion
to satisfy the Kalman Filter Framework. Even though it has been successfully used in many
nonlinear problems, Extended Kalman Filter is limited by assuming that the true posterior
density is a gaussian distribution. Especially when the true posterior distribution is totally
different from a gaussian distribution, filtering performance by Extended Kalman Filter is
heavily distorted. Gaussian sum filter[Daniel et al., 1972] attempts to use a gaussian mixture
instead of one gaussian distribution to approximate the arbitrary posterior distribution, which
is actually designed as a number of Extended Kalman Filters in parallel. However, due to
the fact that it applies EKF framework, the Jacobian matrices have to be calculated at each
iteration which greatly increases the computational cost. Therefore, a lot of attention has been
paid recently to the derivative-free sampling methods, which draws samples from the target
distribution to avoid Jacobian matrices computation. One of the representative deterministic
approximation algorithms is Unscented Kalman Filter [Simon et al., 1995; Eric et al., 2000].
Applying so-called Unscented Transformation, Unscented Kalman Filter directly uses sigma
points to estimate the latent states in general Kalman Filter framework.

No matter which methods mentioned before, they all estimate the posterior distribution as
a gaussian distribution or mixture. Hence they are a class of so called gaussian filters. In this
section, we introduce these gaussian filters starting from the basic Kalman Filter.
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3.1.1 Kalman Filter

Being considered as the simplified version of the general nonlinear system, the linear and
gaussian system is represented as follows :

xt = Fxt−1 + wt−1 (3.1)

yt = Hxt + vt (3.2)

where the nonlinear function a(xt−1,wt−1) and b(xt,vt) in the general model in the equation
(2.1) and (2.2) are transformed into Fxt−1 + wt−1 and Hxt + vt respectively. F is the constant
linear transition matrix and H is the constant observation matrix. Both system noise wt and
observation noise vt are white noise processes with known covariance, i.e., wt ∼ N(0,Q),
vt ∼ N(0,R), where Q = E [wtw

T
t ] and R = E [vtv

T
t ].

Due to the fact that gaussian distribution is closed under the linear transformation, the tran-
sition probability is p(xt|xt−1) ∼ N(Fxt−1,Q), the likelihood density is p(yt|xt) ∼ N(Hxt,R).
It sequentially ensures that the integration in the equation (2.4) and equation (2.5) will produce
gaussian distributions. Therefore, the posterior density will be gaussian according to the equa-
tion (2.3) in the recursive bayesian filtering. This closed-form filter is the well known Kalman
Filter.

Kalman Filter is composed of an iterative predict-update process [Greg et al., 2001; Thacker
et al., 2006; Tristan, 2010; Nathan, 2003]. Here is the general framework :

In the predict step, the estimated state from the previous time is projected to produce a
current state estimation, which is also called the a priori estimation due to the fact that current
observation is not considered.

– Priori state estimation
x̂′t = Fx̂t−1 (3.3)

– Priori covariance estimation
P′t = FPt−1F

T + Q (3.4)

According to the estimated state x̂t−1, Kalman Filter makes one step prediction of the
current state and propagates the estimated covariance Pt−1 using transition probability distri-
bution p(xt|xt−1) ∼ N(Fxt−1,Q) in the state equation.

In the update step, observation information is integrated with the prediction to correct the
priori estimation to obtain a posteriori estimation.

– Kalman Gain
Kt = P′tH

T (HP′tH
T + R)−1 (3.5)

– Posteriori state estimation
x̂t = x̂′t + Kt(yt −Hx̂′t) (3.6)

– Posteriori covariance estimation

Pt = (I−KtH)P′t (3.7)

The posterior estimated state x̂t is expressed as prior estimated state x̂′t plus the correction
item based on the difference between predict observation Hx̂′t and actual observation yt. The
posteriori covariance estimation could be represented as prior estimated covariance P′t minus
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the covariance correction KtHP′t when the current observation is available. Additionally, the
Kalman Gain is obtained using the mean square error measure in order to minimize the cova-
riance Pt. The whole update step illustrates that the estimated state would be more accurate
with smaller covariance after incorporating the observation.

Even though Kalman Filter is an optimal algorithm with an elegant recursive form for
linear and gaussian systems, it is still limited since most of the real systems are nonlinear
and/or nongaussian. In order to apply the Kalman Filter framework in practice, a so called
Extended Kalman filter is designed by relaxing the linear assumption in Kalman Filter.

3.1.2 Extended Kalman Filter

From the perspective of bayesian filtering, integration of equation (2.4) and equation (2.5)
for real systems are impossible to be calculated directly like Kalman Filter because the related
probability distributions of states and observations are not standard guassian distributions.
Hence, approximation methods are the essence of filtering problem for a nonlinear and/or
nongaussian system. Extended Kalman filter is one of the well-known approximate estimators.

Without loss of generality, we consider here a simple class of the general nonlinear system
in equation (2.1) and (2.2) with additive gaussian noise :

xt = f(xt−1) + wt−1 (3.8)

yt = h(xt) + vt (3.9)

where the nonlinear function a(xt−1,wt−1) and b(xt,vt) in the general model in the equation
(2.1) and (2.2) are transformed into f(xt−1) + wt−1 and h(xt) + vt respectively. f and g are
nonlinear differentiable function. Both system noise wt and observation noise vt are white
noise processes with known covariance, i.e., wt ∼ N(0,Q), vt ∼ N(0,R). Then the transition
probability is p(xt|xt−1) ∼ N(f(xt−1),Q), the likelihood density is p(yt|xt) ∼ N(h(xt),R).

The general idea of Extended Kalman Filter is to linearize the nonlinear system by using
first-order taylor expansion to satisfy the linear assumption of Kalman filter, then the state
estimation problem could be solved using Kalman Filter framework [Shoudong, 2010; Maria,
2004].

Here state equation is linearized at x̂t−1 ,

xt ≈ f(x̂t−1) +∇f |x̂t−1(xt−1 − x̂t−1) + wt−1

= ∇f |x̂t−1xt−1 + f(x̂t−1)−∇f |x̂t−1 x̂t−1 + wt−1 (3.10)

where ∇f |x̂t−1 is the Jacobian of f at x̂t−1. Then we could get the linearized state equation

xt ≈ Fxt−1 + Ut−1 + wt−1 (3.11)

where
F = ∇f |x̂t−1 (3.12)

Ut−1 = f(x̂t−1)−∇f |x̂t−1 x̂t−1

= f(x̂t−1)− Fx̂t−1 (3.13)
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observation equation is linearized at x̂′t,

yt ≈ h(x̂′t) +∇h|x̂′t(xt − x̂′t) + vt

where ∇h|x̂′t is the Jacobian of h at x̂′t. Then the linearized observation equation is transformed
to the following form

yt − h(x̂′t) +∇h|x̂′t x̂
′
t ≈ ∇h|x̂′txt + vt

Let
H = ∇h|x̂′t (3.14)

Yt = yt − h(x̂′t) + Hx̂′t (3.15)

Then the final linearized observation equation is as follows

Yt ≈ Hxt + vt (3.16)

Now applying the linearized state space model into Kalman Filter Framework, Extended
Kalman Filter is as follows :

In the predict step, the priori estimation at t is

x̂′t = f(x̂t−1) (3.17)

P′t = ∇f |x̂t−1Pt−1∇fT |x̂t−1 + Q (3.18)

In the update step, the posteriori estimation at t is

x̂t = x̂′t + Kt(yt − h(x̂′t)) (3.19)

Pt = (I−Kt∇h|x̂′t)P
′
t (3.20)

where Kalman Gain Kt is defined :

Kt = P′t∇hT |x̂′t(∇h|x̂′tP
′
t∇hT |x̂′t + R)−1 (3.21)

Since Extended Kalman Filter relaxes the linear assumption in Kalman Filter, the state
estimation problem for a class of nonlinear differentiable systems could be done in the real
world. One of the most important applications is robot localization due to the fact that the
kinematic model and observation model of mobile robot is known and differentiable, and also
the elegant update form is suitable for real time implementation. For example, [Evgeni et al.,
2002] applies Extended Kalman Filter into a lawn mover to localize its position. Additionally,
[Yibing et al., 2005] applies Extended Kalman Filter in the Real-time freeway traffic state
estimation problem, Speed and Rotor Position Estimation of Brushless DC Motor is designed
using Extended Kalman Filter in [Bozo et al., 2001].

However, there are two main drawbacks in Extended Kalman Filter. Firstly, Extended
Kalman Filter keeps the underlying gaussian assumption. Hence, when the true posterior dis-
tribution is not close to a gaussian distribution, the filtering performance by Extended Kalman
Filter is heavily distorted. The other shortcoming is the computation of Jacobian matrices in
the Extended Kalman Filter framework, all the matrices have to be calculated at each iteration
which greatly increases the computational cost.
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Therefore, lots of attention has been paid recently to lighten its disadvantages to improve
estimated performance. The first one could be done with Gaussian sum filter[Daniel et al., 1972]
which is designed using a gaussian mixture rather than one gaussian distribution in Extended
Kalman Filter, and the second one could be solved by a deterministic sampling approximation
methods to avoid Jacobian matrices computation. One of the most representative algorithms
is Unscented Kalman Filter [Simon et al., 1996]. From now on, I will introduce both of them
one by one.

3.1.3 Gaussian Sum Filter

As mentioned above, Extended Kalman Filter works well when the posterior distribution
of nonlinear system is approximately gaussian. However, when true probability distribution
is nongaussian, for example, it is multimodal, the approximation performance by Extended
Kalman Filter would be poor due to the loss of important information in the true density. For
the multimodal distribution, Extended Kalman Filter works more like a maximum likelihood
estimator rather than a minimum variance estimator [Daniel et al., 1972], which leads that
approximated distribution would mistakenly follow one of the peaks in the true density.

The motivation of Gaussian Sum Filter is to apply a weighted sum of gaussian densities as a
filter to approximate the unknown posterior distribution due to the fact that any nongaussian
distribution could be approximated by a sufficient number of gaussian mixture densities to
some precise extent [Zhe, 2003].

Considering the same state space model in Extended Kalman Filter, Gaussian Sum Filter
approximates the posterior distribution using a gaussian mixture. Hence, the gaussian sum
representation could be considered as a convex combination of the output of Extended Kal-
man Filters performing in parallel, which makes each gaussian filter in Gaussian Sum Filter
follow Extended Kalman Filter framework. Assuming that the initial distribution is a gaussian
mixture, we could obtain the approximated posterior distribution recursively by the following
gaussian sum filter [Daniel et al., 1972; Anderson et al., 1979; Jayesh et al., 2003].

In the predict step, we suppose p(xt−1|y0:t−1) is expressed as a gaussian mixture

p(xt−1|y0:t−1) ∼
G∑
i=1

w(t−1)iN(x̂(t−1)i,P(t−1)i) (3.22)

According to equation (2.4), p(xt|y0:t−1) approaches a gaussian sum

p(xt|y0:t−1) ∼
G∑
i=1

w̄tiN(x̂′ti,P
′
ti) (3.23)

as P(t−1)i → 0 for i=1,..., G, where x̂′ti,P
′
ti could be calculated using Extended Kalman Filter

prediction framework :
w̄ti = w(t−1)i (3.24)

x̂′ti = f(x̂(t−1)i) (3.25)

P′ti = ∇f |x̂(t−1)i
P(t−1)i∇fT |x̂(t−1)i

+ Q (3.26)
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In the update step, with p(xt|y0:t−1) shown as a gaussian sum

p(xt|y0:t−1) ∼
G∑
i=1

w̄tiN(x̂′ti,P
′
ti) (3.27)

the posterior distribution could be approximated as a gaussian mixture using equation (2.3)
after receiving the observations

p(xt|y0:t) ∼
G∑
i=1

wtiN(x̂ti,Pti) (3.28)

where x̂ti,Pti could be calculated using Extended Kalman Filter update framework :

x̂ti = x̂′ti + Kti(yt − h(x̂′ti)) (3.29)

Pti = (I−Kti∇h|x̂′ti)P
′
ti (3.30)

Kti = P′ti∇hT |x̂′ti(∇h|x̂′tiP
′
ti∇hT |x̂′ti + R)−1 (3.31)

and the weight could be updated as follows [Anderson et al., 1979] :

wti =
w̄tiαti∑G
i=1 w̄tiαti

(3.32)

αti = N(yt; h(x̂′ti),∇h|x̂′tiP
′
ti∇hT |x̂′ti + R) (3.33)

Here, a multi-equilibrium signal process in [Kazufumi et al., 2000] is considered in order
to illustrate the efficiency of Gaussian Sum Filter for the multimodal question compared with
Extended Kalman Filter. The state space model of one-dimensional signal process is as follows :

xt = xt−1 + 5Txt−1(1− x2t−1) + wt−1 (3.34)

yt = T (xt − 0.05)2 + vt (3.35)

where the system and observation noise are wt ∼ N(0, b2T ), vt ∼ N(0, d2T ) respectively. In
this model, there are three equilibria -1, 0 and 1 where -1 and 1 are stable equilibria. Therefore,
depending on initial state choice and stochastic noise, the system state would be eventually
distributed around -1 or 1.

Here we choose time interval T = 0.005, the ending time is 5, initial state is x0 = 0, b = 0.5,
d = 0.1. Additionally, we use two gauss distributions to construct the gaussian sum filter,
and the initial distributions are N(−1, 2), N(1, 2). The initial weights for these two normal
distributions are both 0.5.

From the simulation, the hidden state finally reaches around the stable state 1 and two
time points t = 100T, 1000T are chosen in figure 3.1 to illustrate how the gaussian sum filter
works. The approximated distributions at these time points are illustrated in figure 3.2, and
figure 3.3 presents the change of the weights in gaussian sum filter.

At t = 10T , the state is around 0 in figure 3.1. At that time point, the mixed degree of two
gaussian distributions is relatively large in figure 3.2, which leads that the weights of them are
almost half and half in figure 3.3. Moreover, due to the fact that the state is definitely around
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Figure 3.2: Approximated distribution at t = 100T, 1000T by Gaussian Sum Filter

1 at t = 1000T in figure 3.1, the gaussian density that is from initial distribution N(1, 2) plays
a leading role in in figure 3.2, whose weight is almost 1 in in figure 3.3.

Finally, in order to illustrate Gaussian sum filter performs better than EKF for multimodal
distribution, we compare the approximated posterior density at t = 100T , 1000T , which are
shown in figure 3.4 and 3.5. In both figures, the state is mistakenly estimated as -1 by Extended
Kalman Filter. On the contrary, Gaussian Sum Filter gets the correct state estimation in both



16

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

W
ei

gh
ts

 

 

weight of Gauss1
weight of Gauss2
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time points because it is the multi-Extended Kalman Filters parallel operation through a weight
sum to obtain more distribution information.
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Figure 3.4: Approximated distribution at t = 100T

Gaussian Sum Filter successfully applies a gaussian mixture to approximate the complica-
ted posterior distribution. However, the mechanism Gaussian Sum Filter is to implement the
algorithm as a number of Extended Kalman Filters, therefore, the computation of Jacobian
matrices would increase very fast, especially when the state space is high dimensional.
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Figure 3.5: Approximated distribution at t = 1000T

As mentioned before, a so called Unscented Kalman Filter provides us a derivative-free
algorithm in which the posterior distribution could be estimated by a couple of deterministic
sigma points.

3.1.4 Unscented Kalman Filter

Even though Extended Kalman filter keeps the computationally efficient online form of
Kalman Filter, it suffers serval limitations [Simon et al., 1995; Xionga et al., 2006; Banani et al.,
2007]. The predicted mean in the Extended Kalman filter is equal to the prior mean mapping
through the nonlinear function. It means that Extended Kalman filter does not consider the
affection of noise distribution, which leads that the filtering performance is highly unstable.
What is more, the computation of Jacobian matrices is not trivial in most of real applications,
especially in high dimensional systems. Hence, in order to improve the accuracy of filtering
efficiently, an Unscented Kalman Filter is developed using unscented transformation in the
General Kalman Filter framework [Simon et al., 1995, 1996, 2004; Xionga et al., 2006; Banani
et al., 2007].

Unscented Transformation is a deterministic sampling method, which applies sigma points
with fixed parameters to propagate the information of data [Zhe, 2003; Eric et al., 2000].
Considering the following general nonlinear equation :

y = g(x) (3.36)

the goal is to predict the mean ȳ and covariance Py of random variable y using the mean x̄
and covariance Px of random variable x. The specific procedure is as follows [Simon et al.,
2004; Eric et al., 2000] :

– Step One : to form a matrix χ of 2L+ 1 sigma vectors χi

χ0 = x̄ (3.37)
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χi = x̄ + (
√

(L+ λ)Px)i, i = 1, · · · , L (3.38)

χi = x̄− (
√

(L+ λ)Px)i−L, i = L+ 1, · · · , 2L (3.39)

where L is the dimension of x, λ = α2(L + κ) − L is a scaling parameter, α is set to a small
positive constant and κ is set to 0 or 3 − L generally.

– Step Two : to propagate 2L+ 1 χi through the nonlinear function :

Yi = g(χi) (3.40)

and then, to use the new 2L+ 1 vectors Yi to calculate the mean ȳ and covariance Py :

ȳ ≈
2L∑
i=0

W
(m)
i Yi (3.41)

Py ≈
2L∑
i=0

W
(c)
i {Yi − ȳ}{Yi − ȳ}T (3.42)

where the weights are given by :

W
(m)
0 = λ/(L+ λ) (3.43)

W
(c)
0 = λ/(L+ λ) + (1− α2 + β) (3.44)

W
(m)
i = W

(c)
i = 1/{2(L+ λ)}, i = 1, · · · , 2L (3.45)

β = 2 is optimal for gaussian distribution.

Incorporating Unscented Transformation into general Kalman Filter framework, a derivative-
free Unscented Kalman Filter is designed with deterministic sigma points instead of Jacobian
computation. The intuition of Unscented Kalman Filter is following [Simon et al., 1995] : With
a fixed number of parameters, it should be easier to approximate a gaussian distribution than
it is to approximate an arbitrary nonlinear function.

Let’s consider the same nonlinear system in Extended Kalman Filter but there is no diffe-
rential assumption for the nonlinear function, the Unscented Kalman Filter is as follows [Eric
et al., 2000; Rambabu et al., 2008; Jouni et al., 2007] :

– Initialization :
x0 ∼ N(x̂0,P0) (3.46)

wt ∼ N(0,Q) (3.47)

vt ∼ N(0,R) (3.48)

Setting :

x̂a0 =
[
x̂T0 0 0

]T
(3.49)

Pa
0 =

P0 0 0
0 Q 0
0 0 R

 (3.50)

For t = 1, 2, ...
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– Sigma points calculation :

χat−1 =
[
x̂at−1 x̂at−1 +

√
(L+ λ)Pa

t−1 x̂at−1 −
√

(L+ λ)Pa
t−1

]
=
[
(χxt−1)

T (χwt−1)
T (χvt−1)

T
]T

(3.51)

– Prediction :
χxt|t−1 = f(χxt−1) + χwt−1 (3.52)

x̂′t =
2L∑
i=0

W
(m)
i χxi,t|t−1 (3.53)

P′t =

2L∑
i=0

W
(c)
i (χxi,t|t−1 − x̂′t)(χ

x
i,t|t−1 − x̂′t)

T (3.54)

Yt|t−1 = h(χxt|t−1) + χvt−1 (3.55)

ŷ′t =
2L∑
i=0

W
(m)
i Yi,t|t−1 (3.56)

– Update :

Pyy =
2L∑
i=0

W
(c)
i (Yi,t|t−1 − ŷ′t)(Yi,t|t−1 − ŷ′t)

T (3.57)

Pxy =
2L∑
i=0

W
(c)
i (χxi,t|t−1 − x̂′t)(Yi,t|t−1 − ŷ′t)

T (3.58)

Kt = PxyP
−1
yy (3.59)

x̂t = x̂′t + Kt(yt − ŷ′t) (3.60)

Pt = P′t −KtPyyK
T
t (3.61)

Here we considering the following Univariate Nonstationary Growth Model in [Jouni et al.,
2007] as an example to compare Unscented Kalman Filter and Extended Kalman Filter :

xt = 0.5xt−1 + 25xt−1(1 + x2t−1)
−1 + 8 cos(1.2t) + wt−1 (3.62)

yt = 0.05x2t + vt (3.63)

where the system and observation noise are wt ∼ N(0, 1), vt ∼ N(0, 1) respectively, the initial
state distribution for both Extended Kalman Filter and Unscented Kalman Filter is x0 ∼
N(0, 1). Additionally, the time interval is 0.01, the terminal time is 0.5, and α =1, β = 2, κ=2.

The simulation results in figure 3.6 and table 3.1 show that the estimated state by Unscented
Kalman Filter is closer to the real state than the estimated state by Extended Kalman Filter
because Unscented Kalman Filter gradually estimates the state using sigma points with noise
consideration. However, we should notice that Unscented Kalman Filter is far way too perfect
because it belongs to general Kalman Framework which means that it keeps the gaussian
assumption for posterior distribution.
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Figure 3.6: The state estimation by UKF and EKF over time

statistics Error by UKF Error by EKF

mean -1.1881 -6.2913

variance 47.5356 108.4723

Table 3.1: Estimated error statistics

Unscented Kalman Filter effectively evaluates the posterior distribution through the sigma
points propagation without any analytic differentiation operartion in Extended Kalman Filter.
It captures the posterior mean and covariance to third order Taylor expansion instead of first
order in Extended Kalman Filter [Eric et al., 2000], where they have the same asymptotic
complexity. However, Unscented Kalman Filter belongs to gaussian filter which means that it
approximates the posterior distribution as a gaussian density. When the true distribution is
highly nongaussian, the Unscented Kalman Filter would perform extremely poor.

3.1.5 Summary

Since R.E.Kalman published the distinguished paper to provide a recursive solution for dis-
crete linear filtering problem [Kalman, 1960], Kalman Filter had been widely used in different
kinds of tracking and control applications. By minimizing the mean squared error (MSE), Kal-
man Filter efficiently estimates the hidden states of the linear and gaussian systems. However,
Kalman Filter is considered as a more theoretical result since linear and gaussian assumption
is actually too strong to apply for most of dynamic systems in the real world.

Many extensions have been designed for nonlinear and/or nongaussian systems during the
past decades. The most famous one is Extended Kalman Filter, which linearizes the nonlinear
system to use the classic Kalman Framework. However, Extended Kalman Filter approximates
the true probability density using a gaussian distribution which dramatically deteriorates the
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estimation performance. Hence Gaussian Sum Filter works as a number of Extended Kalman
Filters, which applies a weighted sum of gaussian mixture densities as a posterior approximation
for nongaussian systems. But the computation of Jacobian matrices for both Extended Kalman
Filter and Gaussian Sum Filter are not trivial in practice. Hence, an Unscented Kalman Filter
is developed using unscented transformation to improve the estimated accuracy efficiently.

One of the primary advantage of this Gaussian Filter class is computational : the update
requires time polynomial in the dimensionality of the state space [Thrun et al., 2005]. However,
this kind of filter will give rise to arbitrarily poor performance when the target distribution is
nongaussian since they keep the underlying gaussian assumption of the true posterior distri-
bution.

Hence more and more researchers have paid attention to the strategy which could deal with
the general nonlinear and nongaussian systems. Monte Carlo methods in the next section have
played a leading role by estimating the true posterior distribution with a collection of random
samples.

3.2 Monte Carlo Sampling Methods

All the filters mentioned previously are based on Kalman Filter framework to estimate the
hidden state in nonlinear system. However, the underlying gaussian assumption limits their
application in the real world. In order to deal with more general nonlinear systems which don’t
put strong constraints on the posterior behavior, Monte carlo methods have been developed
to approximate the probability distribution by producing a set of stochastic samples. In this
Chapter, we will introduce two popular Monte Carlo methods : Importance Sampling and
Markov Chain Monte Carlo. Both of them would be used as the foundation to construct a class
of particle filters and future work.

3.2.1 Monte Carlo Principle

The core of Monte Carlo methods is to draw a set of samples {x(i)}Ni=1 from a target density
p(x) defined on a state space. Using these samples, the target density could be approximated
with the empirical point-mass function as follows [Christophe et al., 2003] :

p̂(x) =
1

N

N∑
i=1

δx(i)(x) (3.64)

where δx(i)(x) is the delta-dirac mass located at x(i). Moreover, numerical integration problem
could also be transformed as an expectation calculation which could be also estimated with
these samples :

Ê(f) =
1

N

N∑
i=1

f(x(i)) −→ E(f) =

∫
f(x)p(x)dx (3.65)

when N →∞, the estimation is converge to E(f) by strong law of large numbers.

However, in general the target distribution p(x) is not a simple combination of standard
distributions, which means that it is almost impossible to sample from it directly. For example,
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if the target distribution p(x) is gaussian, the samples could be drawn easily from it. However,
if it’s a highly nongaussian unknown distribution, we could not sample from it directly. The
Important Sampling techniques are designed to deal with this difficulty. By drawing samples
from a proposal distribution, the target distribution could be approximated by a weight sum.

3.2.2 Important Sampling

In order to improve computational efficiency, important sampling aims to draw the samples
from the important region of the target distribution [Zhe, 2003; Christopher , 2006]. Assuming
the support of proposal distribution q(x) covers the support of target distribution p(x), let’s
reconsider the integration problem :

E(f) =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx =

∫
f(x)w(x)q(x)dx (3.66)

where w(x) ,
p(x)

q(x)
is the important weight.

Using N i.i.d. samples drawn from q(x), important sampling provides a weight sum esti-
mation of the integration :

Ê(f) =
1

N

N∑
i=1

w(x(i))f(x(i)) (3.67)

In practice, the normalized part of target distribution is unknown, therefore, the weight im-
portance is proportional to p(x)/q(x). Generally, we normalized weight importance to obtain
more practical important sampling method.

E(f) =

∫
f(x)p(x)dx =

∫
f(x)

p(x)

q(x)
q(x)dx∫ p(x)

q(x)
q(x)dx

=

∫
f(x)w(x)q(x)dx∫
w(x)q(x)dx

(3.68)

Integration estimation by normalized important sampling transforms :

Ê(f) =

1

N

∑N
i=1w(x(i))f(x(i))

1

N

∑N
i=1w(x(i))

=
N∑
i=1

w̃(x(i))f(x(i)) (3.69)

where w̃(x(i)) =
w(x(i))∑N
i=1w(x(i))

is the normalized important weight.

Similarly, the approximated target distribution is obtained by Monte Carlo principle :

p̂(x) =

N∑
i=1

w̃(x(i))δx(i)(x) (3.70)

Below a trivial example is considered to illustrate how important sampling works. The
target distribution is a gaussian mixture p(x) ∼ 0.5N(−3, 1) + 0.5N(1, 22), we choose an
easy-sampling proposal distribution q(x) ∼ 3.2N(1, 42). Then we draw 30 samples from the
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proposal distribution and calculate their corresponding weights. The sampling results are shown
in figure 3.7. The circles are the samples we draw from the proposal distribution which just
provide the possible values from target distribution, and then we calculate the weight of the
samples (stars). The weight is actually proportional to the probability of the possible values
in the target distribution. Hence Importance Sampling only uses the samples from proposal
distribution and their weight distribution to successfully approximate the target distribution.
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Figure 3.7: Estimated distribution by Important Sampling

However, there are two important issues in important sampling [MacKay , 1998]. Firstly,
the proposal distribution is very crucial for this method. If it’s not a good approximation of
target distribution, the sampling performance would be unacceptable. For example, we at-
tempt to obtain the samples in the high probability region of the target distribution. However,
Importance Sample just allows us sample from the high probability region of the proposal
distribution. Hence, if the high probability region of the proposal distribution is the low proba-
bility region of the target distribution. The sampling process from proposal distribution would
take a long time with large sample set to get the samples from high probability region in the
target distribution. Secondly, in high dimensional system, even if we obtain the samples in
the high probability region of the target distribution, their importance weights also vary by
large factors. It means that the approximation of the target distribution just depends on a few
samples. These two are the root of the weight degeneracy problem in the typical Particle Filter
[Fred et al., 2011].

3.2.3 Markov Chain Monte Carlo

Another popular Monte Carlo method is Markov Chain Monte Carlo (MCMC). It is a sam-
pling strategy where the samples generated from the proposal distribution construct a markov
chain to explore the target state space. Due to the fact that this markov chain is irreducible
and aperiodic, its stationary distribution exists and is equal to the target distribution. Here,
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we briefly introduce two typical MCMC methods : Metropolis-Hastings algorithm and Gibbs
Sampler [Walsh , 2004].

Metropolis-Hastings (MH) algorithm is one of the most practical MCMC methods, which
draws a candidate sample x∗ from proposal distribution q(x∗|x) and accepts it with the pro-
bability α(x∗, x) = min{1, p(x∗)q(x|x∗)/(p(x)q(x∗|x))} :

1. Initialization : set i=0 and draw a start point x(0)

2. For i=0,2,...N-1 :
– sample x∗ ∼ q(x∗|x(i))
– sample u ∼ U(0, 1)
– if u < α(x∗, x(i)) = min{1, p(x∗)q(x(i)|x∗)/(p(x(i))q(x∗|x(i)))}

x(i+1) = x∗

else

x(i+1) = x(i)

After setting the start point x(0), we sample a candidate point x∗ from q(x∗|x(i)) given the
current point x(i), then the markov chain moves to x∗ with acceptance rate α(x∗, x(i)). This
step is illustrated by u < α(x∗, x(i)) in the algorithm where u is a random sample from U(0, 1).
If u < α(x∗, x(i)), it means that α(x∗, x(i)) is large enough to accept the candidate.

Generally an independent proposal distribution q(x∗|x(i)) = q(x∗) is chosen to simplify the
Metropolis-Hastings algorithm. However, the choice of proposal distribution is crucial for the
sampling performance.

For example, the target distribution is a student’s t distribution p(x) = 1/π(1 + x2) and
proposal distribution is N(0, σ2). Using Metropolis-Hastings algorithm with 10000 samples, we
got different approximation results with different proposal distribution. In figure 3.8 and 3.9,
σ = 1 makes the samples well-mixed so that the approximated distribution is close to the true
distribution.

On the contrary, σ = 5 in figure 3.10 and 3.11 leads the samples poor-mixed, where the
approximated distribution is totally different from the target distribution.

Additionally, in order to make the samples well-mixed, generally the samples would be
drawn to estimate the distribution after a burn-in period. This operation could ensure the
stationary has been reached using MCMC.

The Gibbs Sampler is another MCMC algorithm. In fact, it is a special Metropolis-Hastings
algorithm with the acceptance rate α = 1 [Walsh , 2004]. The idea is to sequentially sample n
variables from n univariate conditional distributions, and then the joint approximation distribu-
tion of n variables’ samples simulates the full joint distribution. Here is the specific algorithm :

– Initialization : x
(0)
1:n

– For i = 0, 2, ...N − 1 :

– sample x
(i+1)
1 ∼ p(x1|x(i)2 , x

(i)
3 , · · · , x(i)n )

– sample x
(i+1)
2 ∼ p(x1|x(i+1)

1 , x
(i)
3 , · · · , x(i)n )

...
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Figure 3.8: MH Sampling with q(x∗) ∼ N(0, 1)
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Figure 3.9: Estimated distribution by MH Sampling with q(x∗) ∼ N(0, 1)

– sample x
(i+1)
n ∼ p(xn|x(i+1)

1 , x
(i+1)
2 , · · · , x(i+1)

n−1 )

Considering the following example in which we draw samples from a bivariate gaussian
distribution N(µ,P) using Gibbs Sampler with 2000 samples and assuming that

µ =

[
0
0

]
(3.71)
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Figure 3.10: MH Sampling with q(x∗) ∼ N(0, 52)
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Figure 3.11: Estimated distribution by MH Sampling with q(x∗) ∼ N(0, 52)

P =

[
1 0.5

0.5 1

]
(3.72)

Then, the conditional distribution of x1 given x2 is N(0.5x2, 1 − (0.5)2 = 0.75), similarly, the
conditional distribution of x2 given x1 is N(0.5x1, 0.75). The figure 3.12 shows the path of Gibbs
Sampling in the first 5 iterations, and the generated 2000 samples are shown in figure 3.13.
Both the sampling results in figure 3.14 and 3.15 are shown that the estimated distributions
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well approximate the true distributions.
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Figure 3.12: Path traversed by Gibbs Sampler in first 5 iterations
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Figure 3.13: The 2000 samples generated by Gibbs Sampler

MCMC is a general framework for drawing the samples from complicated high-dimensional
distributions. Metropolis-Hastings algorithm is simple and universal but the choice of proposal
distribution is very crucial because the statistical properties of markov chain heavily depend
on it [Christophe et al., 2008]. A popular variant of Metropolis-Hastings algorithm is Gibbs
Sampler which sequentially samples n variables from n univariate conditional distributions.
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Figure 3.14: Estimated distribution of x1 by Gibbs Sampler
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Figure 3.15: Estimated distribution of x2 by Gibbs Sampler

However, it is still inefficient when highly dependent variables are not generated simultaneously
[Andrieu et al., 2008].

After introducing Monte Carlo methods, the question is how to apply them in to filtering
problem. I would explain it with Particle Filter and Particle MCMC in the following sections.
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3.3 Sequential Monte Carlo Estimation : Particle Filter

For the past decades, Monte Carlo methods have been considered as more robust algorithms
to handle the nongaussian issue using stochastic sampling framework. For a general filtering
problem p(x0:t|y0:t) which is an arbitrary posterior distribution of state sequence given obser-

vation sequence, if the samples x
(i)
0:t (i = 1, · · · , N) could be generated from p(x0:t|y0:t), Monte

Carlo approximations are as follows :

p̂(x0:t|y0:t) =
1

N

N∑
i=1

δ
x
(i)
0:n

(x0:t) (3.73)

E[g(x0:t)] =

∫
g(x0:t)p(x0:t|y0:t)dx0:t ≈ Ê[g(x0:t)] =

1

N

N∑
i=1

g(x
(i)
0:t) (3.74)

However, it’s almost impossible to directly apply Monte Carlo Sampling methods for se-
quential state approximations. Hence, Monte Carlo approximation is applied iteratively to
estimate the subtask at each time step, which is known as Sequential Monte Carlo Sampling
procedure[Jun et al., 1998; Arnaud et al., 2000; Olivier et al., 2007]. Using Sequential Monte
Carlo techniques, the true nongaussian posterior distribution could be approximated by a class
of Particle Filter.

One of the widely used Particle Filters is Sequential Importance Sampling Particle filter
[Zhe, 2003], which is developed by approximating the important region of posterior distribu-
tion recursively. However, there exists one serious drawback called weight degeneracy problem
in this Particle Filter - few weights will be nonzero after several iterations, especially in high
dimensional system. It means that a great number of unimportant particles have to be calcu-
lated all the time, which leads to the inefficient performance [Zhe, 2003; Caglar et al., 2011;
Fred et al., 2011; Samarjit, 2010]. In order to reduce weight degeneracy problem to improve
approximation results, a Resampling step has been developed and used after Importance Sam-
pling at each time step. This produces a well-known Sampling Importance Resampling Particle
Filter [Arnaud et al., 2000; Deok-Jin, 2005]. But this kind of Particle Filter just alleviates the
degeneracy problem rather than solving it because Resampling step introduces high correlation
between particles after a few iterations through replicating the particles with high important
weight at each time step. The weight degeneracy is actually transformed into particle diver-
sity problem, which is one of the underlying reasons why this Particle Filter framework has
unsatisfactory estimation in high dimensional systems [Fred et al., 2011].

In order to compensate the disadvantages of Sampling Importance Resampling Particle
Filter, a number of its variants have been proposed recently. The first one is to choose a
better proposal distribution which could approximate the true posterior distribution as close
as possible. Extended Kalman Particle Filter and Unscented Particle Filter use a gaussian
distribution as the proposal distribution by local linearization [Rudolph et al., 2000]. It could
make use of the current observation information to match the posterior density better. Secondly,
by inserting Markov Chain Monte Carlo into the resampling step, MCMC particle filter would
restore the particle diversity [Walter et al., 2001; Francois et al., 2008]. The third improvement
is related to dynamic model analysis. Through dividing the system into linear and nonlinear
parts, Rao-Blackwellized Particle Filter applies Kalman Filter to deal with the linear part
and Particle Filter to approximate the nonlinear part in order to improve the computational
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efficiency [Thomas et al., 2005; Robert et al., 2007]. Additionally, a KLD-Sampling Particle filter
[Dieter, 2001] is designed to adjust the number of particles efficiently according to Kullback-
Leibler divergence to ensure the approximated accuracy. Last but not least, Another direction is
to combine Particle Filter into the MCMC framework to construct a so-called Particle MCMC
Andrieu et al. [2010], which applies the approximated distribution by Particle Filter as the
proposal distribution of MCMC. Even though the computational complexity is relatively high,
Particle MCMC efficiently estimates the complicated posterior distribution in high dimensional
space by the trivial prior proposal distribution in Particle Filter. Additionally, a novel particle
learning method [Carlos et al., 2010] is developed for filtering, sequential parameter learning
and smoothing in a class of general dynamic systems. The performance is better than Particle
Filter and MCMC.

The following subsections would introduce the general Particle Filter framework that ty-
pically consists of Sequential Importance Sampling and Resampling step to illustrate how it
works.

3.3.1 Sequential Importance Sampling (SIS)

The idea of SIS is to apply importance sampling to draw N samples with N weights from
a factor of q(x0:t|y0:t) at each time step [Niclas, 1999; Jun et al., 1998].

Let’s reconsider the expectation problem using importance sampling view :

E[g(x0:t)] =

∫
g(x0:t)p(x0:t|y0:t)dx0:t

=

∫
g(x0:t)

p(x0:t|y0:t)

q(x0:t|y0:t)
q(x0:t|y0:t)dx0:t (3.75)

and define the weight :

wt(x0:t) =
p(x0:t,y0:t)

q(x0:t|y0:t)
(3.76)

Then, the expectation problem is transformed into a faction which is only related to the weight
and the proposal distribution

E[g(x0:t)] =

∫
g(x0:t)wt(x0:t)q(x0:t|y0:t)dx0:t∫

wt(x0:t)q(x0:t|y0:t)dx0:t
(3.77)

Suppose now the proposal distribution could be expressed as the following factorized form :

q(x0:t|y0:t) = q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1) (3.78)

N samples x
(i)
t at time t could be drawn from q(xt|x0:t−1,y0:t), meanwhile, the weight could

be calculated recursively :

wt(x0:t) =
p(x0:t,y0:t)

q(x0:t|y0:t)

=
p(yt|xt)p(xt|xt−1)p(x0:t−1,y0:t−1)

q(xt|x0:t−1,y0:t)q(x0:t−1|y0:t−1)

=
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1,y0:t)

wt−1(x0:t−1) (3.79)
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According to the analysis above, the Monte Carlo approximations of state sequence are
computed :

Ê[g(x0:t)] =

1

N

∑N
i=1 wt(x

(i)
0:t)g(x

(i)
0:t)

1

N

∑N
i=1 wt(x

(i)
0:t)

=

N∑
i=1

w̃t(x
(i)
0:t)g(x

(i)
0:t) (3.80)

p̂(x0:t|y0:t) =

N∑
i=1

w̃t(x
(i)
0:t)δx(i)

0:t

(x0:t) (3.81)

The SIS framework is as follows :

– For t = 0, 1, 2, ...T

– For i = 1, 2, ...N : sample x
(i)
t ∼ q(xt|x0:t−1,y0:t) and set x

(i)
0:t = {x(i)0:t−1, x

(i)
t }

– For i = 1, 2, ...N : calculate the weights by equation (3.79) and then normalize to

w̃t(x
(i)
0:t)

Here we use the Univariate Nonstationary Growth Model in [Jouni et al., 2007; Olivier
et al., 2007] to illustrate the weight degeneracy problem :

xt = 0.5xt−1 + 25xt−1(1 + x2t−1)
−1 + 8 cos(1.2t) + wt−1 (3.82)

yt = 0.05x2t + vt (3.83)

where the system and observation noise are wt ∼ N(0, 10), vt ∼ N(0, 1) respectively, the initial
state distribution is x0 ∼ N(0, 10). Additionally, we use N = 50 particles at each time step,
time interval is 0.1 and the terminal time is 5.

By SIS methods, the state estimation result is shown in figure 3.16. The hidden state
estimation by SIS is better than Extended Kalman Filter and Unscented Kalman Filter in figure
3.6 when the observation is relatively inaccurate. But SIS is not good enough because there
exists the particle degeneracy problem in figure 3.17. It shows that only around 10 particles
out of 50 have nonzero weights after 50 iterations, which leads to the useless computation.

Even though SIS makes the estimated process simpler with sequentially sampling, it exists
a very serious problem which is known as weight degeneracy. The variance of the importance
weights increases over time so that only few weights would be nonzero after several iterations
[Arnaud et al., 2000], which means that lots of computation waste on updating non-contributed
weights.

3.3.2 Resampling Step

In order to solve weight degeneracy problem, the intuitive idea is to reduce particles with
small weights and focus on particles with large weights. This procedure could be done in
resampling step. There are many popular resampling methods [Zhe, 2003; Arnaud et al., 2008],
here we briefly introduce Multinomial Sampling and Systematic Resampling algorithm.

The basic idea of Multinomial Sampling is to draw N samples from the current particles
according to their normalized weights so that the important particles with large weight could
be propagated to improve the performance.
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Figure 3.16: State Estimation by SIS over time

50 weighted particles at t=49T
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Important weight update

Figure 3.17: SIS operation from 49T to 50T

Another popular resampling method is the following Systematic Resampling which considers
the weights as continuous randomly ordered variables in the interval (0, 1), and it is a minimum
variance sampling algorithm [Zhe, 2003].

1. Set i = 1 and c1 = 0

2. For i = 2, ...N : ci = ci−1 + w̃
(i)
t

3. Set k = 1
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4. Sample u1 ∼ U [0, 1/N ]

5. For j = 1, 2, ...N :
– uj = u1 + (j − 1)/N
– While uj > ck, k = k + 1

– Otherwise, x
(j)
t = x

(k)
t and w̃

(i)
t = 1/N

Additionally, from the particle efficiency perspective, a measure of particle degeneracy could
be used as an effective sample size [Zhe, 2003; Deok-Jin, 2005; Haug, 2005]

Neff ≈
1∑Np

i=1(w̃
(i)
t )2

(3.84)

then if Neff is smaller than the predefined threshold NT = 0.5Np or 2Np/3, resampling step is
performed using resampling methods, otherwise, we neglect this procedure and go to the next
time instant.

3.3.3 Sampling Importance Resampling (SIR) Particle Filter

Sampling Importance Resampling Particle Filter (SIRPF) is a typical stochastic sampling
method for recursive state estimation problem, which combines Importance Sampling and
Resampling at each time step to deal with the weight degeneracy problem in SIS.

Generally, a suitable proposal distribution is crucial for approximation performance. The
optimal proposal distribution which minimizes the variance on the importance weights is given
by [Arnaud et al., 2000; Deok-Jin, 2005; Arnaud et al., 2008]

q(xt|x0:t−1,y0:t) = p(xt|x0:t−1,y0:t) (3.85)

However, it is infeasible to sample from this proposal distribution. Hence, in order to simplify
SIRPF framework, the prior distribution of state sequence is chosen as the proposal distribution

q(x0:t|y0:t) = p(x0:t) = p(x0)

t∏
k=1

p(xk|xk−1) (3.86)

which means
q(xt|x0:t−1,y0:t) = p(xt|xt−1) (3.87)

Therefore, N samples x
(i)
t at time t could be drawn from p(xt|xt−1), and the weight could

be updated recursively :

wt(x0:t) =
p(yt|xt)p(xt|xt−1)
q(xt|x0:t−1,y0:t)

wt−1(x0:t−1)

= p(yt|xt)wt−1(x0:t−1) (3.88)

The generic SIR Particle Filter framework is as follows [Pierre et al., 2006; Gordon et al.,
1993; Michael et al., 2009; Caglar et al., 2011] :

– For n = 0, 1, 2, ...T

1. For i = 1, 2, ...N : sample x
(i)
t ∼ p(xt|xt−1) and set x

(i)
0:t = {x(i)0:t−1, x

(i)
n }
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2. For i = 1, 2, ...N : calculate the weights according to equation (3.88) and then

normalize to w̃t(x
(i)
0:t)

3. resample the currentN particles according to their weights to obtainN new particles
with equal weights 1/N

Considering the same Univariate Nonstationary Growth Model in [Jouni et al., 2007; Olivier
et al., 2007], all the conditions are the same except that a resampling step is added after
Importance step at each time. In figure 3.18. The estimation is closer to the true hidden state
than SIS method and the degeneracy problem is done with resampling step, which is shown in
figure 3.19.
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Figure 3.18: State Estimation by SIR over time

3.3.4 Discussion on SIR Particle Filters

SIR Particle Filter has been widely used in the real nonlinear and nongaussian systems, for
example, it could be used for target tracking in wireless senor network [Huiying et al., 2010],
mobile robot navigation and localization [Niclas, 1999] and computer vision [Samarjit, 2010].

However, there are serval drawbacks [Caglar et al., 2011; Fred et al., 2011; Samarjit, 2010;
Jinxia et al., 2010; Peter et al., 2008]. Firstly, the resampling step effectively alleviates particle
degeneracy problem, but meanwhile it introduces the sample diversity impoverishment because
of copying the important particles with large weights. Secondly, SIR Particle Filter lies in the
simplicity due to apply the transition probability as the proposal distribution at each time
step, however, the new information from the observation yt is not contained in this proposal
distribution, which makes the filter sensitive for the outliers and predict blindly, especially when
the likelihood is relatively narrow. Thirdly, Particle Filter requires relatively high computation
that is time exponential in n. n is the dimension of the state vector. Hence the effective number
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Importance weight update

50 weighted particles at t=50T

50 particles with equal weights at t=50T

50 particles with equal weights at t=49T

IS

RS

Figure 3.19: SIR operation from 49T to 50T, where IS represents Importance Sampling and
RS represents Resampling.

of particles is a very crucial factor for computational efficiency, especially in high dimensional
systems.

3.4 Particle Markov Chain Monte Carlo

Sequential Monte Carlo and Markov Chain Monte Carlo are the most two popular sampling
methods for state estimation, however, both of them have unsatisfactory performance in the
complicated high dimensional dynamic systems. SIR Particle filter reduces weight degeneracy
problem via resampling, but this operation will introduce sample diversity impoverishment.
Metropolis-Hastings algorithm is one of the best known MCMC algorithm that draws the
samples from high-dimensional distributions, but the produced markov chain heavily depends
on whether the proposal distribution is good or not [Christophe et al., 2008].

In this context, the recent Particle Markov Chain Monte Carlo method [Andrieu et al., 2010,
2008] provides a general framework to incorporate Sequential Monte Carlo into MCMC, which
takes advantage of the merits in both methods in order to update the estimation performance
further in high dimensional cases.

3.4.1 Particle Metropolis-Hastings Sampler

Particle MCMC follows the idea which considers the approximation distribution given
by Particle Filter as the proposal distribution in MCMC. It aims to approximate the high-
dimensional complicated posterior distribution using the trivial low dimensional proposal dis-
tribution by Particle Filter.
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A standard Metropolis-Hastings algorithm for filtering is to sample a candidate x?0:t from
a proposal distribution q(x0:t|y0:t) and accept it with the rate

α = min{1, p(x
?
0:t|y0:t)q(x0:t|y0:t)

p(x0:t|y0:t)q(x?0:t|y0:t)
} (3.89)

Generally, it’s not feasible to get the optimal proposal qopt(x0:t|y0:t) = p(x0:t|y0:t). Hence, it
is natural to consider a good approximation of true posterior as a proposal distribution in
MCMC. Particle filter algorithm provides a convenient way for sampling using MCMC since
its approximation distribution is represented by discrete weighted particles.

By derivation from [Andrieu et al., 2010], the general Particle Metropolis-Hastings algo-
rithm is as follows :

1. i = 0, run a Particle Filter algorithm and calculate the approximated marginal distribu-
tion p̂(y0:t)(0), then draw a sample x0:t(0) ∼ p̂(x0:t|y0:t)

2. For iteration i ≥ 1
– run a Particle Filter and calculate the approximated marginal distribution p̂(y0:t)

?,
then draw a sample x?0:t ∼ p̂(x0:t|y0:t)

– with rate

α = min{1, p̂(y0:t)
?

p̂(y0:t)(i− 1)
} (3.90)

accept x0:t(i) = x?0:t and p̂(y0:t)(i) = p̂(y0:t)
?

– otherwise
x0:t(i) = x0:t(i− 1) (3.91)

p̂(y0:t)(i) = p̂(y0:t)(i− 1) (3.92)

This algorithm could be applied to approximate complicated distributions with high precision
while only requiring the low dimensional proposal design in Particle Filter.

Considering the nonlinear system in [Andrieu et al., 2010] as an example :

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos(1.2t) + wt (3.93)

yt =
x2n
20

+ vt (3.94)

where the system and observation noise are assumed as gaussian distribution wt ∼ N(0, 20),
vt ∼ N(0, 20) respectively, the initial state distribution is x0 ∼ N(0, 5). Time interval is set to
0.1 and the terminal time is 5, then the objective is specified as p(x0:50|y0:50). Additionally,
the iteration of MCMC is 1000.

In figure 3.20, the estimated state sequence using Particle MCMC correctly approximates
the true latent state sequence with relatively small variance even though the observation has
relatively large noise at average level. Figure 3.21 shows that the approximated posterior dis-
tribution is well-fitted for true hidden state distribution at t = 50.
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Figure 3.20: State estimation over time given observation
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Figure 3.21: Posterior distribution approximation at t = 50

3.4.2 Discussion on Particle MCMC

Particle MCMC applies the estimated posterior distribution by Particle filter as a proposal
distribution in MCMC. It could be more robust since it is less likely to suffer from the weight
degeneracy problem which is one of the best known drawbacks in Particle Filter [Andrieu et al.,
2010]. In fact, Particle MCMC does not need Particle Filter to provide an accurate posterior
approximation due to the fact that the estimated density by particle filter just returns a sample
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in MCMC.

Lately, some extensions of Particle MCMC have been developed to improve the performance
further for general dynamic systems. [Garethet al., 2010] incorporates an adaptive MCMC into
Particle MCMC framework so that the new method could adaptively learn the important
region of marginal distribution for unknown model parameters in a general nonlinear dynamic
system. [Chopinet al., 2011] applies Particle MCMC as the MCMC rejuvenation steps in the
iterated batch importance sampling (IBIS) to automatically tune the parameters with the same
complexity as Particle MCMC under some certain condition. [Whiteleyet al., 2009] designs a
new Particle MCMC for a class of multiple change-point problems. However, there still exists
some improvements in Particle MCMC [Andrieu et al., 2010]. Firstly, other more efficient
Particle Filters or Smoothers would be a better proposal in MCMC. Then, a parallel chain or
Population-Based MCMC algorithms could be used to increase the sample diversity.

According to this Chapter, there exists some drawbacks in the current methods for esti-
mation problem. Hence, I propose to apply nonparametric techniques to solve these problems,
and then apply the proposed methods in the real dynamic systems.
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Research Objectives and Approach

After pointing out the drawbacks of the existing Bayesian Filtering algorithms, I should now
explain what is my ultimate objective. My objective aims to apply nonparametric techniques
to construct a general online estimation framework to overcome the shortcomings of current
methods so that it could be applied in the real constrained environments with high accuracy
as well as computational efficiency.

4.1 Research Objectives

The specific goals are as follow :

1. Improving the estimation performance of Particle MCMC

a) Applying an efficient Particle Filter or Smoother to MCMC

b) Implementing MCMCs in parallel to increase the sample diversity

2. Designing an efficient proposal for Particle Filter using nonparametric methods

a) Using nonparametric methods to learn the optimal sequential proposal distribution

b) Solving weight degeneracy problem by nonparametric methods

3. Designing a filtering framework for nonparametric dynamic system

a) Designing a filtering framework for a dynamic model based on Gaussian Process

b) Solving the estimation problem for a dynamic model based on Dirichlet Process

4. Applying the proposed nonparametric filtering methods into smoothing algorithms

5. Incorporating the designed nonparametric filter framework into nonlinear control

6. Implementing/validating our algorithms on toy examples and then on realistic applica-
tions

39
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4.2 Methodologies

4.2.1 Methodologies for objective 1

Particle MCMC incorporates the approximated distribution by Particle Filter as the pro-
posal distribution in MCMC to form a general framework to estimate the high dimensional
systems. Hence, there are two sub-perspectives to improve the performance of Particle MCMC :
one is to design an efficient Particle Filter or Smoother for MCMC, and the other is to imple-
ment MCMCs in parallel to increase the sample diversity.

4.2.1.1 Methodologies for subobjective 1a)

One of the main reasons why the recent Particle MCMC has high computation is that SIR
particle filter fixes the number of particle. This would lead computational waste, especially
when the true posterior distribution changes vastly over time. For example, in the begin-
ning of global localization, mobile robot is with high uncertainty. We need a large number
of particles to approximate the posterior distribution to get the relatively accurate position.
However, once the robot knows where it is, we actually just need a very small number of par-
ticles to obtain its position. Hence, if the number of particle is fixed, the computation is less
efficient. KLD-Sampling Particle Filter is a good way to adjust the particle number according
to Kullback-Leibler divergence to improve the approximation quality [Dieter, 2001]. Hence, i
plan to incorporate KLD-Sampling Particle Filter into Particle MCMC method to improve the
accuracy and efficiency of Particle MCMC.

The proposed methodology to tackle the first sub-objective is to use KLD-Sampling Par-
ticle Filter instead of SIR Particle Filter as a proposal distribution in MCMC to improve the
computational efficiency.

4.2.1.2 Methodologies for subobjective 1b)

In the basic Particle MCMC, Particle Filter would be operated at each iteration in MCMC.
It is a kind of computational waste since all but only one particle from Particle Filter would
be abandoned at each MCMC iteration [Andrieu et al., 2010].

The possible methodology is to apply a parallel MCMC or Population-Based MCMC into
Particle MCMC framework to take advantage of all the particles so that the estimation per-
formance would be better because of increasing the particle diversity.

4.2.2 Methodologies for objective 2

The proposal distribution in Particle Filter is one of the most crucial factors to determine
whether its estimation is good or not. The following methodologies aim to deal with the two
subobjectives : one is to use nonparametric methods to learn the optimal sequential proposal
distribution , the other is to solve weight degeneracy problem by nonparametric methods.
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4.2.2.1 Methodologies for subobjective 2a)

The optimal proposal in the weight update fashion is p(xt|xt−1,yt). However, it is impossible
to get it because it is actually unknown. For simplicity, the typical SIR Particle Filter applies
the transition probability p(xt|xt−1) as a proposal distribution. But it does not consider the
current observation information yt. In other words, we blindly draw the samples from p(xt|xt−1)
without adding the observation information, which would heavily affect estimation result.

For example, the weight update of SIR Particle Filter in practice is

wt(x0:t) =
p(yt|xt)p(xt|xt−1)
q(xt|xt−1,yt)

wt−1(x0:t−1)

= p(yt|xt)wt−1(x0:t−1) (4.1)

Since we do resampling at each time step, the weights at t− 1 are the same which means that
wt−1(x0:t−1) could be deleted. Then

wt(x0:t) = p(yt|xt) (4.2)

In figure 4.1, the high probability region of the proposal distribution q(xt|xt−1,yt) = p(xt|xt−1)
is the low probability region of target distribution p(yt|xt)p(xt|xt−1). Hence the samples we
blindly draw from proposal distribution are not located at the important region of target distri-
bution, which leads the fact that their weight distribution according to likelihood distribution
p(yt|xt) is not possible to approximate the target distribution. From the likelihood distribu-

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

Likelihood Distribution p(yt|xt)

Transition Distribution p(xt|x(t −1))

Proposal Distribution q(xt|x(t −1), yt) = p(xt|x(t −1)) Target Distribution =p(yt|xt)p(xt|x(t−1))

Samples from Proposal Distribution

Weight Distribution

Figure 4.1: Important Sampling at one time step in Particle Filter

tion, we could see the variance is relatively small which means that the current observation
accurately describes the current state. But proposal distribution does not consider it. This is
the underlying reason for poor estimation performance.

Hence, in order to add the current observation information to improve the approximation,
the methodology for the first subgoal is to use nonparametric methods to learn the optimal
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proposal distribution. In [Jonathan et al., 2009; Jonathan , 2011; Marc et al., 2009], the gaussian
process is used to learn the state space model for filtering problem. In fact, they apply gaussian
process to learn the transition and likelihood distribution. According to what they did, the
proposed methodology expects that a gaussian process could learn the proposal distribution.
Since the optimal proposal distribution at one time actually reflects the nonlinear relationship
between [xt−1,yt] and xt, learning this distribution is actually a general gaussian process
regression problem. Furthermore, if we treat this as a regression problem, we could also consider
other regression methods in which the prediction is a probability form .

4.2.2.2 Methodologies for subobjective 2b)

Even though the subobjective 2a) would improve the estimation performance by adding
current observation information, the modified Particle Filter still have the weight degeneracy
problem. The resampling step hides this problem by replicating the particles with large weight,
but it will bring the particle diversity loss problem. Additionally, resampling step will also lead
time-consuming problem.

Hence, the motivation is how to solve the weight degeneracy problem without resampling
step. Looking back to the original importance sampling procedure, we find

wt(xt) ∝
p(yt|xt)p(xt|y1:t−1)

q(xt|y1:t)
(4.3)

If the weight does not update in a sequential fashion and just use the above form, the weight
degeneracy problem could be done [Jan, 2011]. Hence the methodology for the second su-
bobjective is to approximate the total optimal proposal q(xt|y1:t) and prediction distribution
p(xt|y1:t−1) by gaussian process regression or other nonparametric methods.

4.2.3 Methodologies for objective 3

Generally a filtering problem assumes that the dynamic state space model has been already
known, however, it is not the case in the real world. Hence the goal is to develop a general
filtering framework for the unknown dynamic model. The first thing is to learn the unknown
dynamic model from the training data set. Since the traditional parametric models use a finite
number of parameters, it would suffer from over-fitting or under-fitting of data when the model
complexity and the amount of data do not match. Hence, more and more attention has been
focused on nonparametric model. The representative two are gaussian process and dirichlet
process. Both of them could be applied to establish the Hidden Markov Model, which allows
us to incorporate filtering techniques to implement the general estimation.

4.2.3.1 Methodologies for subobjective 3a)

[Jonathan et al., 2009; Jonathan , 2011] uses gaussian process to learn the state space
model and then applies it with different kinds of filtering algorithm. The limitation is that
they use the ground true state in the training set, which may not be possible in the real
applications. Therefore, they extended their gaussian process Bayesian filter with modified
Gaussian Processes Latent Variable Model [Jonathan et al., 2009, 2011; Lawrence, 2005] which
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is original from Gaussian Processes Dynamical Model[Jacket al., 2008]. Hence the methodology
is to learn optimal proposal for Particle Filter using Gaussian Processes Dynamical Model.

4.2.3.2 Methodologies for subobjective 3b)

The Dirichlet process is a stochastic process which could be applied as a bayesian nonpara-
metric model for training data, especially in the Dirichlet process mixture models. [Caron et al.,
2008] uses a Dirichlet process mixture to model the unknown noise distribution in the linear
and gaussian dynamic system, and then develops an off-line MCMC and an online particle
filter for estimation problem. Additionally, the hierarchical Dirichlet process hidden Markov
model (HDP-HMM) and its variants [Beal et al., 2002; Yee et al., 2010; Emily, 2009; Emily
et al., 2007] have been established for the past decades, which provide us a good way to design
the general filtering framework with bayesian nonparametric models. [Emily et al., 2007] uses
HDP-HMM in a linear gaussian dynamic model with unknown control input, then Kalman
filter is applied for estimation problem. However, filtering for both models mentioned before
is just for linear and gaussian system. Hence the methodology is to apply Dirichlet process
mixture or HDP-HMM into the general nonlinear dynamic model, and then combine different
Monte Carlo methods (MCMC, Sequential Monte Carlo) to solve the estimation problem.

4.2.4 Methodologies for objective 4

As mentioned before, if the state space model is unknown, we should learn it from the
training set. In fact, learning requires more smoothing rather than filtering because smoo-
thing provides better estimation of the state in the process [Stuart et al., 2010; Carlos et al.,
2010]. Hence the idea is to apply the previous proposed nonparametric filtering framework into
smoothing algorithms for a general dynamic system in order to improve the approximation
efficiency.

4.2.5 Methodologies for objective 5

Control task is actually the final goal for a general dynamic system after learning the model
and estimating the state [Nadine et al., 2007]. The recent articles [Villiers et al., 2011; Stahl
et al., 2011] successfully combine particle filter into a nonlinear model predictive controller
design in order to increase the control robustness.

Hence the methodology is to use the designed nonparametric filter framework into nonlinear
predict model control to improve the control performance. Additionally, filtering technique is
actually a state estimation method, if we could use the estimated state as a feedback which
could be used as input of nonlinear controllers design, the close loop control system could have
good transitional and steady performance.

4.2.6 Methodologies for objective 6

Filtering technique could be applied in a great number of real applications, such as visual-
based human motion tracking, financial analysis, weather broadcasting and so on. Hence, the
methodology is to implement the algorithms on toy examples and then on realistic applications.
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One of the most important real applications is autonomous robot localization and navigation,
which would be considered as my main implementation plan.

4.2.7 Work Package

Here are three main work packages : formal theory studies, methods evaluation and com-
plexity analysis, practical application implementation.

Formal theory studies : the existing filtering techniques unsatisfactorily performs when
the posterior distribution of a dynamic system is complicated and nongaussian. The underlying
reason is that there are some drawbacks in their theoretical design frameworks. Hence, it is
necessary to study the formal theory in depth, which is the foundation of my research work.

1. Further study on the Filtering and smoothing Theory to broaden the design framework
for a general dynamic system :
• Further study on Particle MCMC and KLD-Sampling Particle Filter to find the combi-

nation manner : [Stuart et al., 2010; Zhe, 2003; Arnaud et al., 2000; Olivier et al., 2007;
Deok-Jin, 2005; Arnaud et al., 2008; Haug, 2005; Andrieu et al., 2010, 2008; Dieter,
2001; Thrun et al., 2005; Carlos et al., 2010; Garethet al., 2010; Chopinet al., 2011;
Whiteleyet al., 2009]
• Review the mathematical derivation of existing filtering and their own drawbacks :

[Kalman, 1960; Maria, 2004; Daniel et al., 1972; Zhe, 2003; Simon et al., 2004; Jun
et al., 1998; Arnaud et al., 2000; Olivier et al., 2007; Fred et al., 2011; Jinxia et al.,
2010; Peter et al., 2008; Carlos et al., 2010].
• Finish the study of other novel filtering methods [Choo et al., 2001; Guo et al., 2006;

Andreasen , 2008; Friston, 2008]. This will provide many other creative frameworks
which could be used in the proposed methods since the design generally needs the
combination of different filtering algorithms.
• Kernel Adaptive Filtering : [Weifeng et al., 2010]. It aims to get a general idea how the

nonparametric kernel methods could be applied in the filtering problem.
• Smoothing techniques : [Stuart et al., 2010; Heijden et al., 2004; Carlos et al., 2010].

2. Further study on the Nonparametric Theory systemically in order to incorporate suitable
techniques for filtering in complex dynamic phenomenon :
• Firstly, further study on Gaussian Process [Christopher , 2006; Carl et al., 2006] so

that i could fully understand its merits and shortcomings. Secondly, further study
on how the gaussian process could be used to establish nonparametric state space
model [Jonathan et al., 2009; Jonathan , 2011; Jonathan et al., 2011; Lawrence, 2005;
Jacket al., 2008; Hartikainen et al., 2010; Marc et al., 2009], especially when we just
know the observation sequence that is the common case in the real world.
• Understand Dirichlet distribution, Dirichlet Process, Dirichlet Process Mixture, Hie-

rarchical Dirichlet Process and how to apply it into hidden Markov model [Bela et al.,
2010; Caron et al., 2008; Beal et al., 2002; Yee et al., 2010; Emily, 2009; Emily et al.,
2007].
• Other nonparametric methods for opening my mind : [Stuart et al., 2010; Zhe, 2003].

3. Apply the state estimated by the nonparametric filter to develop the novel nonlinear
controller to make the close loop control system more robust : [Nadine et al., 2007;
Villiers et al., 2011; Stahl et al., 2011; Tapaniet al., 2009].
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Methods evaluation and complexity analysis : after sufficiently studying all the
theory, I will design the nonparametric filtering/smoothing framework for the general dynamic
systems, and then analyze the computational complexity and prove its validation. Theorem
proof and performance analysis of proposed methodologies are very important since this step
could show whether the designed methods are valid or not at theoretical level, whether the
computational efficiency is good enough for the practical applications in the real world.

Practical application implementation :

A critical reason why we need to design a novel filter is that the estimated results should
ensure the estimated accuracy while alleviating the computational cost. Here are serval work
packages for the implementation issue with data from real system.

1. Master the operations of real robot platform

2. Programme the nonparametric filter framework to realize the given tasks

3. Evaluate the performance by error statistics and comparison with current methods

According to what i plan to do, i will introduce the research work i’m currently doing in
the following chapter.
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Current Work and Preliminary
Results

Currently, there are two specific parts of my work whose general goal is to make more
accurate approximation of Bayesian filtering :

1. The first work is to combine a KLD-Sampling Particle Filter into Particle MCMC fra-
mework so that the designed algorithm could adjust the particle quantity and quality
in the Particle Filter to obtain a better proposal distribution in MCMC to improve the
estimated performance.

2. The second work is to apply gaussian process regression to learn a proposal distribution,
which incorporates the current observation information to obtain an approximation op-
timal proposal distribution, to improve the estimated performance for general nonlinear
and nongaussian systems.

5.1 Adaptive Particle Markov Chain Monte Carlo

There are two widely used sampling methods for general high-dimensional probability dis-
tribution : Sequential Monte Carlo and Markov Chain Monte Carlo. However, the shortcomings
in both algorithms will severely restrict their applications in practice. The well known weight
degeneracy problem in SIR Particle Filter could be alleviated by resampling, but the particle
diversity will be reduced over time. The MCMC methods is theoretically feasible, but the
practical performance would deteriorate when the proposal distribution is not well chosen. In-
tuitively, a lot of attention has been paid on whether these two methods could be efficiently
combined together to form a general framework. Particle Markov Chain Monte Carlo method
has been developed lately by applying the approximation posterior by Sequential Monte Carlo
as a proposal in MCMC in order to update the estimation performance further in high dimen-
sional cases [Andrieu et al., 2010, 2008].

However, the traditional SIR Particle Filter used in Particle MCMC fixes particle number,
which causes the estimation to have high computational complexity and low approximation
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efficiency, especially when true posterior changes vastly over time. A well-known variant named
KLD-Sampling Particle Filter could deal with this problem adaptively using Kullback-Leibler
divergence.

Hence, the idea is to apply KLD-Sampling Particle Filter into Particle MCMC Framework
to ensure the approximate performance with high efficiency.

5.1.1 KLD-Sampling Particle filter

It’s known that the number of the particles greatly affects the inference performance. In
the traditional particle filter, this number is always fixed, which leads to poor performance
because the complexity of posterior distribution changes vastly over time [Dieter, 2001]. In
order to improve estimation quality, KLD-Sampling particle filter is proposed [Dieter, 2001;
Thrun et al., 2005] to adjust the number of particles adaptively over time via bounding the
inference error with Kullback-Leibler divergence (KLD) :

KL[p̂(x)‖p(x)] =
∑
x

p̂(x) log
p̂(x)

p(x)
(5.1)

where p̂(x) is the discrete approximated distribution of p(x).

For any discrete distribution p(x) with k different bins, the number of samples drawn from
p̂(x) is defined :

N =
χ2
k−1,1−δ

2ε
(5.2)

so that KLD between the true discrete distribution and its maximum likelihood estimation is
smaller than ε with confidence 1 − δ. In the formula, χ2

k−1 is the chi-square distribution with
k − 1 degrees of freedom.

For the state estimation problem, the true posterior distribution of state sequence is unk-
nown, which means that the number of bins k is unknown. Hence at each time step in the
particle filter, k is incremental if there is a new sampled particle which does not belong to the
previous bins. The KLD particle filter algorithm is shown as follows :

1. Initialize ε and δ

2. For t = 1, 2, ...T , set N = 0, k = 0

a) Sample a particle x
(i)
t−1 with the normalized weights at t− 1

b) Sample a particle x
(N)
t ∼ p(xt|x(i)t−1)

c) Calculate its weight according to p(yt|x(N)
t )

d) if (x
(N)
t falls into an empty bin b) then

i. k = k + 1

ii. Set b non-empty

e) N = N + 1

f) if N > 1
2εχ

2
k−1,1−δ, return x

(i)
t (i = 1, 2, ...N). Otherwise, return to a)

At each time step, KLD-Sampling particle filter calculates the necessary particle number
to estimate the true posterior distribution in the conventional particle filter framework, then
the Monte Carlo approximation could be represented with time-variant particle number.
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5.1.2 KLD-Sampling Particle Markov Chain Monte Carlo

Particle MCMC is a simple way to estimate state sequence problem with high accuracy,
however, its relatively expensive tradeoff is computational efficiency because it actually belongs
to MCMC algorithms, which takes a long time to converge. Here, we consider this problem by
replacing the standard Particle Filter with KLD-Sampling particle filter in the previous Particle
MCMC Framework. By doing so, the proposed KLD-Sampling Particle MCMC reduces the
computation through improving the quantity and quality of the particles adaptively.

1. i = 0, run KLD-Sampling particle filter and calculate the approximated marginal distri-
bution p̂(y0:t)(0), then draw a sample x0:t(0) ∼ p̂(x0:t|y0:t)

2. For iteration i ≥ 1
– run KLD-Sampling particle filter and calculate the approximated marginal distribution
p̂(y0:t)

?, then draw a sample x?0:t ∼ p̂(x0:t|y0:t)
– with rate

α = min{1, p̂(y0:t)
?

p̂(y0:t)(i− 1)
} (5.3)

accept x0:t(i) = x?0:t and p̂(y0:t)(i) = p̂(y0:t)
?

– otherwise
x0:t(i) = x0:t(i− 1) (5.4)

p̂(y0:t)(i) = p̂(y0:t)(i− 1) (5.5)

Due to the fact that KLD-Sampling particle filter is modified by the traditional particle
filter using Kullback-Leibler divergence, which could be applied in conjunction with any scheme
[Dieter, 2001], the validity of KLD-Sampling Particle MCMC could be proved with the same
theorem in [Andrieu et al., 2010].

5.1.3 Numerical Illustration

Considering the Univariate Nonstationary Growth Model :

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos(1.2t) + wt (5.6)

yt =
x2t
20

+ vt (5.7)

where the system and observation noise are assumed as gaussian distribution wt ∼ N(0, 20),
vt ∼ N(0, 20) respectively, the initial state distribution is x0 ∼ N(0, 5).

Time interval is set to 0.1 and the terminal time is 5, then the objective is specified as
p(x0:50|y0:50). In KLD-Sampling particle filter, both ε and δ are set to 0.05. Additionally, the
iteration of MCMC is 1000.

The simulations are shown as follows by running the KLD-Sampling Particle MCMC and
Particle MCMC respectively. In figure 5.1, the estimated state sequence using KLD-Sampling
particle MCMC correctly approximates the true latent state sequence with relatively small
variance even though the observation has relatively large noise at average level.
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Figure 5.1: State estimation over time given observation

In 5.2, the average number of particles in the proposed algorithm is smaller than 100 over
time.
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Figure 5.2: Average number of particles over time

We then run standard Particle MCMC in which the particle number is fixed as N = 100.
Using root mean squared error (RMSE) as the evaluation criteria

RMSE =

√√√√ 1

T

T∑
t=1

(xt − x̂t)2 (5.8)

we got the following result :
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PMCMC KLD-Sampling PMCMC

RMSE 0.7033 0.4874

Table 5.1: RMSE Comparison

As we could see, our KLD-Sampling Particle MCMC performs better than standard Particle
MCMC.

Additionally, the acceptance rate over iteration and MCMC samples drawn from the pro-
posed algorithm at t = 50 are respectively shown in figure 5.3 and 5.4. Both results show that
the samples are well mixed.
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Figure 5.3: Acceptance rate over iteration

Finally, figure 5.5 shows that the approximated posterior distribution is well-fitted for true
hidden state distribution at t = 50. This also validates our KLD-Sampling Particle MCMC.

Above all, the simulation clearly represents that KLD-Sampling PMCMC applies smaller
size of particles and simpler proposal distribution to get better approximation and higher
efficiency.

I have submitted this work to Signal Processing Letters [Wanget al., 2011].

5.2 Gaussian Process Based Particle Filter

One of the most successful techniques for state estimation is Particle Filter. The traditional
SIR Particle filter is based on Importance Sampling and Resampling at each time step, hence the
proposal distribution is a very crucial factor determining whether the estimated performance
is acceptable.

The optimal proposal distribution is given by

q(xt|xt−1,yt) = p(xt|xt−1,yt) (5.9)
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Figure 5.4: Samples at t = 50 by KLD-Sampling Particle MCMC
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Figure 5.5: Posterior distribution approximation at t = 50

However, it is difficult to sample p(xt|xt−1,yt) because it’s unknown. Therefore, SIR Particle
Filter applies the parametric transition probability p(xt|xt−1) as the proposal distribution. This
simple consideration neglects the important information of the current observation yt, which
leads to the poor estimation.

Therefore, the idea is to use nonparametric gaussian process to learn the optimal proposal
distribution to improve the approximated performance and alleviate the weight degeneracy
problem.
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5.2.1 Gaussian Process Regression

A gaussian process is a collection of random variables , any finite number of which have a
joint gaussian distribution [Carl et al., 2006]. It is a nonparametric method which represents a
gaussian distribution over functions.

Assume the training set with n data is D = < X, y >, where X = [x1,x2, · · · ,xn] is the
input matrix and xi is d dimensional. y = [y1, y2, · · · , yn] is the output vector, a regression
problem could be solved by the gaussian process as follows [Christopher , 2006; Jonathan et al.,
2009; Carl et al., 2006] :

yi = f(xi) + ε (5.10)

where ε ∼ N(0, σ2ε ) and f is a nonlinear function. Based on the training set D = < X, y >
and a test input x∗, the gaussian process defines a gaussian predictive distribution over the
target output y∗ :

p(y∗|x∗, D) = N(y∗;µ(x∗, D),Σ(x∗, D)) (5.11)

with the mean
µ(x∗, D) = kT∗ [K + σ2ε I]−1y (5.12)

and variance
Σ(x∗, D) = k(x∗,x∗)− kT∗ [K + σ2ε I]−1k∗ (5.13)

where k is the kernel function of gaussian process. k∗ is a vector that represents the kernel
values between the test input and the training set, k∗[i] = k(x∗,xi). K is the kernel matrix of
the training set, K[i, j] = k(xi,xj).

The most widely used kernel function is gaussian kernel :

k(x,x′) = σ2fexp[−0.5(x− x′)W (x− x′)T ] (5.14)

where σ2f is the signal variance related to nonlinear function f , W defines the smoothness of

the process. Additionally, the hyperparameters σ2ε , σ
2
f and W could be learned using numerial

optimization methods such as conjugate gradient ascent [Carl et al., 2006].

5.2.2 Particle Filter Based on Gaussian Process

The goal is to apply gaussian process to learn the optimal proposal distribution p(xt|xt−1,yt).
In fact, this proposal distribution reflects the nonlinear model between [xt−1,yt] and xt :

xt = g(xt−1,yt) + ε (5.15)

where g is a nonlinear unknown function, ε ∼ N(0, σ2ε I).

The problem now is actually transformed to use gaussian process to learn this model. The
training set in this model becomesD =< [xtrainingt−1 ,ytrainingt ],xtrainingt > and then the gaussian
process model is :

p(xt|xt−1,yt) ≈ N(µ([x(t−1),yt], D),Σ([x(t−1),yt], D)) (5.16)

Then the resulting gaussian process based particle filter is :
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– For n = 0, 1, 2, ...T

1. For i = 1, 2, ...N : sample x
(i)
t ∼ p(xt|xt−1,yt) ≈ N(µ([x(t−1),yt], D),Σ([x(t−1),yt], D))

and set x
(i)
0:t = {x(i)0:t−1, x

(i)
n }

2. For i = 1, 2, ...N : calculate the weights according to

wt(x0:t) =
p(yt|xt)p(xt|xt−1)
p(xt|x0:t−1,y0:t)

(5.17)

and then normalize to w̃t(x
(i)
0:t)

3. resample the currentN particles according to their weights to obtainN new particles
with equal weights 1/N

5.2.3 Numerical Illustration

Considering the previous Univariate Nonstationary Growth Model :

xt =
xt−1

2
+ 25

xt−1
1 + x2t−1

+ 8 cos(1.2t) + wt (5.18)

yt =
x2t
20

+ vt (5.19)

where the system and observation noise are assumed as gaussian distribution wt ∼ N(0, 10),
vt ∼ N(0, 1) respectively, the initial state distribution is x0 ∼ N(0, 10). Time interval is set to
0.01 and the terminal time is 0.5, then the objective is specified as p(x0:50|y0:50). The number
of particle is 10 at each time. With the simplicity, we set the hyperparameters σ2ε = 1, σ2f = 1
and W = I. In the training set, we use 50 training data at each time step.
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Figure 5.6: State Estimation by Gaussian Process Based Particle Filter
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In the figure 5.6, the estimated state by Gaussian Process Based Particle Filter is well fitted
with actual state. Then using root mean squared error (RMSE) as the evaluation criteria, we
compare the performance of different filters :

RMSE

Extened Kalman Filter 475.4430

SIR Particle Filter with 10 particles 2.0183

SIR Particle Filter with 100 particles 1.7209

Gaussian Process Based Particle Filter with 10 particles 1.5775

Table 5.2: RMSE Comparison

From the results, we could see the estimated performance of Gaussian Process Based Particle
Filter with 10 particles is the best among the Extended Kalman Filter and SIR Particle Filter.
we also notice that Gaussian Process Based Particle Filter with 10 particles is even better than
SIR Particle Filter with 100, which could improve the computational efficiency.

I’m submitting this work to ICRA 2012.

In order to make the proposed plan more implementable, I will provide a work plan to
illustrate what I will do in the rest of my PhD studies.
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Work Plan and Implementation

6.1 Work Plan

After introducing my research objective, methodology and current work, generally here is
my future work plan with time schedule for the rest of my PhD :

1. Formal theory study

a) Improving Particle MCMC algorithm : Fall 2011 to Spring 2012

b) Mastering Bayesian nonparametric theory : Fall 2011 to Summer 2012

c) Investigating Bayesian nonparametric methods for state estimation and control :
Fall 2011 to Summer 2012

2. Elaborating the algorithms and analyzing performance

a) Develop the bayesian nonparametric techniques for estimation and control problem :
Spring 2012 to Fall 2013

b) Theoretical simulation and performance analysis : Summer 2012 to Fall 2013

c) Experimenting the proposed algorithm on real systems : Fall 2012 to Fall 2013

d) Validation via article publication : Summer 2012 to Fall 2013

3. PhD thesis writing and defense : Spring 2014 to Summer 2014

6.2 Potential Obstacles

There are serval potential design issues along with the nonparametric filtering framework
design and implementation :

1. Whether the proposal distribution designed by nonparametric methods could be sampled
efficiently : the samples could be easily drawn from the proposal distribution which should
be considered when choosing the nonparametric methods.
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2. Whether the designed proposal distribution by nonparametric methods could be compu-
tational efficiency : if we plan to overcome the weight degeneracy problem of the typical
particle filter, we should design the proposal distribution to approximate the true poste-
rior distribution as close as possible. This could lead that the training data set should be
large enough to get a good nonparametric density estimation.

3. The combination manner of nonparametric models and filtering framework : one of the
theoretical problems is how to design a feasible Sequential Monte Carlo method for a
complicated nonparametric dynamic system. In the real world, we generally do not know
the form of dynamic model, hence nonparametric methods could be used to learn the
underlying state space model. However, there exists a question about whether Sequential
Monte Carlo or MCMC is suitable for these nonparametric model. In other words, the
learned nonparametric model should be a form of probability distribution and not very
complicated to implement. Hence, understanding both theories is the first step, then how
to design the manner of cooperation is the most important issue.

4. Whether the design algorithm is too complicated for real system. The real robot system
needs to estimate in a online manner in order to finish the given task, so we should keep
in mind that it’s necessary to design accurate nonparametric filtering with appropriate
computational load.
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Conclusion

The general objective for my research proposal is to use nonparametric techniques to deal
with the general estimation problems. Through the combination of different sampling methods
with adaptive scheme and a better proposal distribution design, we expect the result would im-
prove the estimation accuracy. Additionally, in order to solve the real applications, we attempt
to propose a filtering and smoothing framework for nonparametric bayesian model where we
should learn the unknown dynamic system by nonparametric methods. Finally, all the tech-
niques should be used to solve the nonlinear control problem in robotics, and we will apply
error comparison and computational complexity analysis to evaluate the proposed algorithms’
validity.
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