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logiciel

pour l’obtention du grade de Philosophiae Doctor (Ph. D.)

c©Pierrick Plamondon, 2007



Résumé

L’allocation de ressources est un problème omniprésent qui survient dès que des

ressources limitées doivent être distribuées parmi de multiples agents autonomes (e.g.,

personnes, compagnies, robots). La planification stochastique est aussi un problème

très commun qui focalise sur le développement de modèles et d’algorithmes pour se

comporter de façon optimale dans un environnement incertain. Le but de cette thèse

est de proposer des algorithmes rapides et efficaces pour allouer des ressources con-

sommables et non consommables à des agents dont les préférences sur ces ressources

sont induits par un processus stochastique. Afin d’y parvenir, nous avons développé

des nouveaux modèles pour des problèmes de planifications, basés sur le cadre des Pro-

cessus Décisionnels de Markov (MDPs), où l’espace d’action possible est explicitement

paramétrisées par les ressources disponibles. Sachant ces modèles, nous développons

des algorithmes basés sur la programmation dynamique et la recherche heuristique en

temps-réel afin de générer des allocations de ressources pour des agents qui agissent

dans un environnement stochastique.

En particulier, nous avons utilisé la propriété acyclique des créations de tâches pour

décomposer le problème. Nous avons aussi proposé une stratégie de décomposition

approximative, où les agents considèrent des interactions positives et négatives entre

ainsi que les actions simultanées entre les agents. Cependant, les majeurs contributions

de cette thèse est l’adoption de la recherche heuristique en temps-réel pour l’allocation

de ressource. Pour cette fin, la Q-decomposition et des bornes strictes sont proposées

afin de diminuer drastiquement le temps de planification pour formuler une politique

optimale. Ces bornes strictes permettent aussi d’élaguer l’espace d’action pour les

agents.

Nous montrons analytiquement et empiriquement que les approches proposées

mènent à des (dans plusieurs cas, exponentiel) diminutions dans la complexité de calcul

par rapport des approches de planification standards. Finalement, nous avons testé

la recherche heuristique en temps réel dans le simulateur SADM, qui est l’état de l’art

d’un simulateur d’allocation de ressource pour une frégate.



Abstract

Resource allocation is a ubiquitous problem that arises whenever limited resources

have to be distributed among multiple autonomous entities (e.g., people, companies,

robots). Stochastic planning is also a very common problem that focuses on developing

models and algorithms for behaving optimally in uncertain environments. The goal of

this thesis is to propose computationally efficient algorithms for allocating consumable

and non-consumable resources among agents whose preferences for these resources are

induced by a stochastic process. Towards this end, we develop new models of planning

problems, based on the framework of Markov decision processes (MDPs), where the

action sets are explicitly parameterized by the available resources. Given these models,

we design algorithms based on dynamic programming and real-time heuristic search to

formulate allocations of resources for agents to act in stochastic environments.

In particular, we have used the acyclic property of task creation to decompose the

problem. We have also proposed an approximative decomposition strategy, where the

agents consider positive and negative interactions as well as simultaneous actions among

the agents. However, the main contributions of this thesis is the adaptation of stochastic

real-time heuristic search for a resource allocation. To this end, Q-decomposition and

tight bounds are proposed to diminish drastically the planning time to formulate the

optimal policy. These tight bounds also enable to prune the action space for the agents.

We show analytically and empirically that our proposed approaches lead to drastic

(in many cases, exponential) improvements in computational efficiency over standard

planning methods. Finally, we have tested real-time heuristic search in the SADM

simulator, which is a state-of-the-art simulator for the resource allocation of a platform.
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Chapter 1

Introduction

The problem of resource allocation among multiple autonomous entities (agents)

is ubiquitous in the modern world. Thus, for instance, an airmail company has to

allocate the right types and amount of planes to distribute the mails. A company has

to distribute a limited budget among the departments of the company. A government

has to distribute a limited budget among its ministers. Making the right allocation

decisions in these and other similar scenarios can be of critical importance.

However, what does it means to allocate the resources in the “right” way? A good

government wants to maximize the long-term welfare of the residents. An airmail wants

to minimize the delivery time, the delays and maximize its profit. A company aims to

satisfy the needs of its client and ultimately maximize its profit.

In all the above examples, the goal of the resource-allocation process is to maximize

a measure of global utility that can be obtained by the agents in the system by using

these resources. This, in turn, raises the question of what determines the value of a

particular set of resources to an agent. Resources are used by the agents to pursue their

goals and to obtain rewards on achieving the latter.

However, in order to be able to achieve those goals, the agents often need to solve

a nontrivial planning problem. For example, when an airmail allocates the right types

and amount of planes to distribute the mail, the set of possible plane types and amount

should be determined a priori. Similarly, the government has to think about the possible

budget types that may be allocated to its ministers. In any realistic domain, such a

planning process is complicated by the fact that an agent faces multiple interdependent

objectives, whose achievement requires executing sequences of actions whose outcomes

are uncertain. For instance, profitability of an airmail business is subject to many

external factors (plane durability, demand, competition) that can seldom be predicted

with certainty.

The focus of this dissertation is on the interconnected problems of resource allocation

and decision making under uncertainty about the dynamics of the environments the
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agents operate in. When viewed primarily from the resource allocation perspective,

this work can be characterized as a study of algorithms for resource allocation where

the values of the resources allocated to the agents are defined by the agents’ stochastic

planning problems. Alternatively, if the planning problem is placed at the forefront,

the work can be described as a study of multiagent planning under uncertainty, where

the interactions between agents are defined by the resources that are being distributed

among them.

In this thesis, we focus on problems where the allocation of resources is done in

multiple steps: the agents execute an action, then observe the result, and they execute

another action, and so on, until a final state is reached. This dissertation (a) describes

a formal framework of such resource-allocation and stochastic planning-problems, (b)

analyzes their properties, and (c) develops tractable algorithms for computing them.

1.1 Resource Allocation and Stochastic Planning

The problem of resource allocation to tasks among multiple agents arises in countless

domains and is studied in many diverse research fields such as economics, operations

research, and computer science. The main focus of the work done in the area of resource

allocation is on developing mechanisms that distribute the resources among the agents

in desirable ways, given the agents’ preferences over sets of resources. In such problems,

the characteristics of the agents’ utility functions often have a significant bearing on

the properties of the resource-allocation problem. However, although defining classes of

utility functions that lead to well-behaved resource-allocation problems is a topic that

has received a lot of attention, most work stays agnostic about the underlying processes

that define the agents’ preferences for resources.

Stochastic planning, or sequential decision making under uncertainty, is also a very

widely studied problem that has found application in many diverse areas. As a result,

several formal mathematical frameworks (e.g., Markov decision processes (MDPs)) have

emerged as popular tools for studying such problems. However, for the most part, such

models do not have an explicit notion of resources and do not explicitly address the

problem of planning under resource constraints.

The fundamental insight of the work in this dissertation is that these two classes

of problems are strongly intertwined in ways that make analyzing and solving them

in concert very beneficial. The motivation behind this work is that many real-world

domains have both resource-allocation and stochastic-planning components to them,

and the main hypothesis of this thesis is that by integrating these two problems and

studying them in tandem, we can fruitfully exploit structure that is lost if the prob-

lems are considered in isolation. For example, real-time heuristic search is a planning
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component, and when tight bounds for resource allocation are defined, this integration

permits a significant reduction in planning time. Indeed, this dissertation supports its

claims with analytical and empirical data.

1.2 Main Contributions

1
Constrained MDPs

parameterized by 

resources

2
Computationally

efficient resource

allocation

allows

2a
Acyclic

decomposition

2b
Resource

decomposition

2c
Q-decomposition

2d
Tight initial 

bounds

3
Bridging stochastic

planning and resource

allocation

byby by by

Figure 1.1: Main Contributions of this thesis.

The main contribution of this dissertation is a class of new resource-allocation meth-

ods for problems where agents’ utility functions are induced by Markov decision pro-

cesses. The main result of this work is based on the fact that there is a lot of structure

in such MDP induced preferences, which can be exploited to yield drastic (often expo-

nential) reductions in computational complexity of the resource-allocation algorithm.

More specifically, the major contributions of the work presented in this disserta-

tion are as follows (depicted schematically in Figure 1.1 with the labels in the figure

corresponding to the numbering in the list below).

1. Markov decision processes with resources constraints. In this work, we

present new models based on the framework of Markov decision processes (MDPs)

of stochastic-planning problems for agents whose capabilities are parameterized by

the resources available to them. These models may capture situations where the
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agents have limited capacities that restrict what sets of resources they can make

use of. The benefit of making the notion of resources and capacities explicit in the

stochastic planning models is that it allows a parameterization of the planning

problem that supports the development of efficient multiagent resource-allocation

methods.

2. Computationally efficient resource allocation. We develop and evaluate

a suite of computationally efficient resource-allocation methods for agents with

preferences induced by MDPs. The computational efficiency is achieved through

the use of the following techniques.

(a) Acyclic decomposition. The idea of acyclic decomposition is to transform

our resource allocation problem in an abstract acyclic one, which contains

many cyclic components. A component corresponds to a group of task, and

the graph contains a component for each possible task combination. The

formation of the acyclic graph is induced by task creations by other tasks.

This graph is solved from the leaf to the root and permits a significant

reduction in planning time.

(b) Resource decomposition. The resource allocation problem is decomposed

so that a planning agent manages each specific resource. The separate poli-

cies produced by the agents, if not coordinated, are not optimal for two

reasons. Firstly, some resources may have positive and negative interac-

tions since the expectation of realizing a certain task ta1 by resource res1 is

changed when allocating another resource res2 simultaneously on task ta1.

Secondly, the resources have to be distributed efficiently among the tasks to

accomplish. Thus, the planning agents are coordinated together during the

planning process through a central agent, for producing a near-optimal pol-

icy. The planning agents generate a policy to allocate their resources using a

MDP. This method is called “Multiagent Task Associated Markov Decision

Process”.

(c) Q-decomposition. In some cases, the resources are already shared among

the agents, but the actions made by an agent may influence the reward

obtained by at least another agent. To solve efficiently this kind of problem,

we use Q-decomposition in the context of real-time heuristic search. Q-

decomposition permits to reduce significantly the theoretical and practical

complexity of the problem to formulate an optimal policy for the agents.

(d) Tight initial bounds. We propose tight initial lower and upper bounds for

real-time dynamic programming in the context of a resource allocation prob-

lem with consumable and non-consumable resources. These bounds permit

to diminish the number of backups before convergence and to prune the ac-
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tion space of uncompetitive actions. Thus, these tights initial bounds reduce

also the planning time to formulate an optimal policy.

3. Bridging stochastic planning and resource allocation. Another (perhaps

more speculative) contribution of this thesis is that, by considering resource-

allocation and planning problems concurrently, it strengthens the currently un-

derdeveloped link between these two research areas. This dissertation only begins

to explore this broader connection, but our results indicate that the relationship

can be very synergistic.

1.3 Overview of the Thesis

The rest of this thesis is organized as follow:

• Chapter 2 overviews scheduling which is the main modeling tool for resource

allocation problems.

• Chapter 3 begins by describing the major planning approaches in operation

research and artificial intelligence. In particular, we describe a sequential decision

making tool, Markov Decision Processes (MDPs), employed to model stochastic

resource allocation problems.

• Chapter 4 introduces the resource allocation problem which lead to this dis-

sertation and the context surrounding the allocation of resources for a ship to

counter anti-ship missiles are described. Afterwards, a toy problem which is very

similar to our naval problem is presented and we discuss the best modeling tool

for our problem. We argue that Markov Decision Processes are very suitable.

Finally, our toy problem helps to understand the ensuing formulation of MDP

in the context of resource allocation where consumable and non-consumable are

available to execute a set of tasks in a sequential manner.

• Chapter 5 presents stochastic real-time heuristic search. By using, real-time

heuristic search, a policy is available at any time, but more importantly, a good

initial heuristic may reduce the planning time significantly compared to standard

planning approaches such as value iteration and policy iteration. This chapter also

extends previous works on real-time heuristic search and proposes tight initial

lower and upper bounds for real-time dynamic programming in the context of

a resource allocation problem with consumable and non-consumable resources

(Contribution 2d).

• Chapter 6 proposes different problem decomposition approaches to diminish the

complexity of our problem. To this end:
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– Section 6.1 deals for a specific type of resource allocation problem where

the resources are already shared among the agents, but the actions made by

an agent may influence the reward obtained by at least another agent. In

this context, Q-decomposition in the context of real-time heuristic search is

employed (Contribution 2c).

– Section 6.2 discusses the idea of acyclic decomposition as described in Con-

tribution 2a.

– Section 6.3 introduces Multiagent Task Associated Markov Decision Pro-

cesses (MTAMDP), which is Contribution 2b. This section also proposes

a merging of MTAMDP with acyclic decomposition to further reduce the

planning time.

• Chapter 7 describes the work done with the Surface Air Defence Model (SADM)

naval simulator. In particular, an heuristic search approach has been implemented

which solves efficiently the problem. However, the heuristic search approach is

hindered by an inadequate models which opens future work.

• Chapter 8 concludes with a summary of the main contributions of the thesis, its

limitations, and a discussion of the questions that remain open.

The next chapter overviews different techniques for scheduling found in the litera-

ture.



Chapter 2

Techniques for Scheduling with

Uncertainty

This chapter overviews the scheduling techniques. According to Smith et al. (2000),

scheduling research has focused on large problems where there is little action choice, but

the resulting ordering problem is hard. In brief, scheduling aims to allocate resources to

execute tasks. In this thesis, we are interested in a specific aspect of scheduling, where

there are uncertainty in the effectiveness of the resources.

2.1 Common Models of Scheduling

According to Davenport and Beck (2002), scheduling problems are composed of

tasks (i.e. activities), resources, and constraints. A task has a start time, end time and

duration, specifying the period of time over which execution of the task takes place.

The two most important classes of constraints are temporal constraints and resource

constraints. Temporal constraints expresses temporal relationship between tasks, such

as one task must take place after another. Resource constraints express constraints on

resource usage, such as a resource may process only one task at a time.

Two common models of scheduling which have been widely studied are the Job

Shop Scheduling Problem and the Resource Constrained Project Scheduling Problem.

We briefly review these two models in the remainder of this section. We latter use

these perfect information models to provide a basis for understanding the ways in

which reasoning about uncertainty has been introduced into scheduling.

An n × m job shop scheduling problem consists of n jobs and m resources. Each

job consists of a set of m completely ordered tasks, where each task has a duration for

which it must execute and a resource which it must execute on. The complete ordering

defines a set of precedence constraints, meaning that no task can begin execution until
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the task that immediately precedes it in the complete ordering has finished execution.

Each of the m tasks in a single job requires exclusive use of one of the m resources

defined in the problem. No tasks that require the same resource can overlap in their

execution and once a task is started it must be executed for its entire duration (i.e., no

pre-emption allowed). The job shop scheduling decision problem is to decide if all tasks

can be scheduled, given for each job a release date of 0 and a due date of the desired

makespan, D, while respecting the resource and precedence constraints. The job shop

scheduling decision problem is NP-complete (Garey and Johnson, 1979).

A resource constrained project scheduling problem consists of a set of n tasks and m

resources. Each task has a defined duration and may be linked by precedence constraints

to any of the other tasks. Each task requires some amount of one or more of the m

resources during its duration of execution. Each resource has a maximum capacity

expressing the total amount of the resource that can be used at any time point by

any set of tasks. As with the job shop scheduling problem, a solution to the problem

is to determine, given a release date for all tasks of 0 and a due date of the desired

makespan, if there exists a schedule that respects the resource capacity constraints and

the precedence constraints. The decision variant of the resource constrained project

scheduling problem is NP-complete (Herroelen and Demeulemeester, 1995).

More realistic models of scheduling problems include components of job shop

scheduling decision problem and resource constrained project scheduling problem

(Nuitjen and Aarts, 1997) as well as a variety of additional constraints (e.g. breaks

during which a particular resource cannot be used, time dependant resource availabil-

ity, set-up and tear-down tasks required before each activity, etc.).

It should be noted that it is seldom the case that a schedule is executed in isola-

tion. Real world schedules depend on and are depended on by external agents such as

costumers and suppliers in a supply chain of a manufacturing organization. A schedule

therefore is not simply an internal recipe for a set of tasks but also a basis for commu-

nication and coordination with external agents. These external dependencies make the

management of uncertainty even more critical as unexpected events that are not reacted

to and contained may have an impact that far out-weights their original importance.

2.2 Uncertainty in Scheduling

An example from the airport ground service scheduling domain (Hildum, 1994) is

given in this section to provide a concrete example of uncertainty that arises in the

execution of schedules. The airport ground service scheduling domain is modeled as

follows:

• We are given a master timetable of flights F : {F∞, ..., FI} and a collection of
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resources R : {R∞, ..., RR}. Each of the flights in F requires the execution of some

sequence of ground-servicing tasks from the task set T : {T∞, ..., TT} depending on

the particular type of ground service requested. A job, comprised of some sequence

of Ti’s: {T1, ..., Tn}, is instantiated for each flight Fi ∈ F . All flights have a ready

time, corresponding to flight arrival time, and a due date, corresponding to flight

departure time. The goal of the problem is to allocate resources to tasks while

satisfying the temporal and resources constraints.

There are many sources of uncertainty in this problem. The set of flights F is not fixed.

Airport timetables are subject to fluctuation as flights that might be canceled, delayed

or modified in the course of execution. Processing time is inherent dynamic. The

duration of a task may depend on the time of day it is executed or on which resource

is used to precess the task. Weather conditions, both local and remote, also have a

significant impact on flights arriving and leaving the airport. Delays in timetables as a

result of problems at other airports can also add to uncertainty. Many ground servicing

tasks take longer to complete under difficult weather conditions, and may require extra,

unplanned for tasks to be executed in such situations.

2.3 Dealing with Uncertainty

In general, there are two approaches to dealing with uncertainty in a scheduling envi-

ronment: proactive and reactive scheduling. Proactive scheduling constructs predictive

schedules that account for statistical knowledge of uncertainty. Reactive scheduling

involves revising or reoptimizing a schedule when an unexpected event occurs.

A scheduling system that is able to deal with uncertainty is very likely to employ

both proactive and reactive techniques. A proactive technique will typically requires

a, perhaps trivial, reactive component to deal with the occurrence of uncertain events

during scheduling execution: obviously, the schedule, exactly as defined, cannot con-

tinue to be executed with a broken machine, therefore some reasoning on execution

time is mandatory even if it is necessary to put in place a contingent schedule that was

proactively computed. Furthermore, it is unlikely that it will be worthwhile to take into

account all unexpected events proactively. Some will be to improbable or too minor and

therefore if they do occur will have to be dealt with reactively. Similarly, a major con-

straint on reactive scheduling is the timeliness of the response. This requirement means

that optimization at execution time is nor a realistic goal. Use of a proactive technique

may however provide the reactive component with strict bounds ont the complexity of

its computation while possibly allowing higher quality solutions to be found.

We describe in the remaining of this chapter some approaches to scheduling with

uncertainty. Section 2.3.1 examines proactive techniques that account for uncertainty
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by inserting some form of redundancy, typically extra time, into the schedule. This is

followed, in Section 2.3.2, by techniques using a more formal probabilistic reasoning and

then, in Section 2.3.3, by techniques which create multiple schedules to deal with dif-

ferent contingencies that may arise during schedule execution. Section 2.3.4 addresses

approaches that more explicitly make use of both off-line (proactive) and on-line (re-

active) scheduling while the final section. Finally, we discuss all these techniques in

Section 2.3.5.

2.3.1 Redundancy-based Techniques

The main characteristic of the work reviewed in this section is the reservation of

extra time and/or resources so that unexpected events during execution (e.g., resource

failures, longer task durations) can be dealt with by using some of this “extra” time

and resources. In particular, two different redundancy approaches have been proposed

in the literature: (1) Fault tolerant real-time scheduling, (2) slack-based protection.

Fault Tolerant Real-time Scheduling

While there are a number of differences between scheduling problems and solution

techniques typical of manufacturing and project scheduling and those typical of the

scheduling of real-time systems, a critical component of providing real-time guarantees

for schedule execution is the ability to cope with faults. Therefore, there has been

significant work done on dealing with uncertainty for real-time systems.

Redundancy is the typical way in which fault tolerance is guaranteed. Two forms

of redundancy are common:

1. Resource redundancy — Multiple identical sets of resources are used to execute

multiple versions of each task in parallel.

2. Time redundancy — Time is reserved to re-execute tasks that fail.

Slack-based Protection

Leon et al. (1994) studied robust scheduling by redefining the evaluation function of

a schedule to include an expression of robustness. Given such an evaluation function,

optimal schedules can be found using traditional OR search techniques.

In order to define an evaluation function, a number of robustness measures have

been developed and evaluated. The problem model used is as follows: let S be a job

shop schedule specifying the order in which tasks are executed on machines, and let
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Mo(S) be the deterministic makespan of S assuming no disruption. Let the random

variable M(S) denote the actual makespan of S in the presence of disruptions. No

task can be processed during a disruption and disrupted tasks must be restarted from

the beginning. When disruption occur, schedule breakage is fixed by applying the

Right Shift rule, which pushes tasks affected by the disruption forward in time, without

changing the sequence of tasks processed by any machine.

The schedule delay is defined as a random variable expressing the difference between

executed and deterministic schedule makespan.

δ(S) = M(S)−Mo(S) (2.1)

Since Mo(S) is deterministic, we can write the expected values of M and δ as:

E[M(S)] = E[δ(S)] + Mo(S) (2.2)

A small value for expected delay implies that the schedule is affected little by random

disruptions. However, zero delays can be achieved by inserting large amounts of idle

time into the schedule, therefore simply minimizing expected delay is unlikely to lead

to usable schedules. Expected makespan is also important in maximizing the use of

the resources in the scheduling environment, therefore, the authors define schedule

robustness as a linear combination of expected makespan and delay. Let r be a real

value weight in the interval [0, 1]. Schedule robustness, R(S), is defined as:

R(S) = r ×E[M(S)] + (1− r)× E[δ(S)] (2.3)

The R(S) robustness measure is one of the few attempts outside the real-time schedul-

ing community to formalize the definition of schedule robustness. Unfortunately, the

measure conflates the notion of robustness with the traditional job shop optimization

criteria of makespan minimization. A formalization of schedule robustness must be

independent of a specific optimization criteria if it is to be useful. It is likely to be

necessary to balance robustness against other measures of schedule quality and there-

fore including a particular optimization criteria in the definition of robustness limits its

applicability.

Discussion on Redundancy-based Techniques

For the type of scheduling problem we are interested in this thesis, resource and

time redundancies are irrelevant. We are interested in problems where the number of

available resources and the time window to execute each tasks are fixed.

2.3.2 Probabilistic Techniques

Redundancy-based techniques address the problem of uncertainty with the assump-

tion that adding redundancy can be a solution. Probabilistic techniques take a different
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approach. Rather than starting with the assumption that redundancy is the solution,

that start from the position that a key piece of information is the probability that the

schedule can be executed. A priori, this is a diagnostic tool rather than the solution:

it does not produce robust schedules, rather it allows the uncertainty in a schedule

to be measured. However, once we have the ability to measure such probabilities, we

may also be able to build schedules so as to maximize them. We can use, for example,

probabilistic techniques to guide the amount and location of redundancy that should

be inserted into a schedule?

Probabilistic Real-time Fault Tolerant Scheduling

The standard form of real-time system fault tolerance guarantees is to assume a

fault model as part of the problem definition. A schedule is created based on the fault

model and the typical fault tolerant guarantee is that all due dates will be achieved as

long as the faults arrive no more quickly than assumed by the fault model.

Burns et al. (1997) introduced the notion of a probabilistic guarantee for hard real-

time systems. This probabilistic guarantee is a guarantee of schedulability with an

associated probability. In particular, this means that a guarantee of 99% for a schedule

does not indicate that 99% of the jobs will meet their due dates but rather that in 99%

of the executions of this schedule, all jobs will meet their due dates. This is a similar

notion of probabilistic customer service levels in inventory management where the level

of inventory allocated to a warehouse is such that all customers orders will be met some

percentage of the time.

β-Robust Scheduling

Rather than faults as the source of uncertainty, another model considers duration

or precessing time uncertainty. That is, the time that each activity must execute is not

precisely known and the goal is to produce a schedule with the maximum probability

of achieving a specific level of some performance measure.

Daniels and Carrillo (1997) introduced the notion of a β-robust schedule for a single-

machine scheduling model with precessing time uncertainty. In particular, the authors

noted that with such a source of uncertainty, it is insufficient to simply consider the

mean value of a measure of schedule quality (e.g., mean flow time). In fact, the vari-

ance provides critical information. Under uncertainty, a schedule with optimal mean

performance may have an extremely high variance wile a schedule with a sub-optimal

mean performance may have a much lower variance. It it is important to minimize the

risk of unacceptable performance rather than achieve optimal performance, the latter

schedule may be preferable.
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Multiobjective Stochastic Dominance A∗ Search

In recent years much work has been carried out in the AI planning community on

decision theoretic planning. This differ from classical AI planning in the following ways

(Wellman, 1993):

• the effects of actions are described by probability distributions over outcomes;

• objectives are described by utility functions;

• the criteria for effective plan generation is expected utility maximization.

Although this work seems applicable to scheduling, and number of researchers have

suggested using decision theory to deal with uncertainty in the scheduling domain

(Drummond et al. (1994); Pape (1991)), little work has been carried out in this area.

Here, we look at work that applies multiobjective stochastic dominance A∗ search on a

single-machine scheduling problem. In Sections 2.3.3 and 2.3.4 we look at other work

within decision theoretic planning with contingent and off-line/on-line approaches to

uncertainty, respectively.

Wurman and Wellman (1996) addressed studied the stochastic lot-sizing problem

which consists of a set of orders for different inventories and a task schema defining

production and shipping tasks for different quantities of each inventory and for setting

up the machine to produce each inventory. The optimization criteria is the expected

weighted number of tardy jobs. The processing time of each production task is stochas-

tic but proportional to the amount of inventory produced. Shipping tasks are instan-

taneous and do not require the machine while setup tasks have a stochastic processing

time independent of the preceding and succeeding production tasks. Each order has a

due date and a penalty that must be paid if the inventory is not shipped by the due

date.

The authors adopted a state encoding that consists of a set of orders (and whether

they have already been met), the quantity of each inventory that currently exists, and

the current machine setup. The cost of a state is represented by a pair of distributions:

one for the accrued cost and one for the time.

The authors showed that this state encoding requires the use of Multiobjective

Stochastic Dominance A∗ (MO-SDA∗) which ensures a sound and complete search of

the state space. The precise definition of MO-SDA∗ is beyond the scope of this thesis,

however, it should be noted that the critical contribution of the method is a necessary

and sufficient basis on which paths in the search can be pruned.
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Discussion on Probabilistic Techniques

Probabilistic techniques are essential tools for the type of resource allocation problem

we are interested in this thesis. In particular, we are interested in problems where the

action outcomes are stochastic, thus decision-theoretic planning is essential.

2.3.3 Contingent Scheduling

Redundancy and probabilistic techniques are based on the approach of generating a

single schedule that is likely to be able to incorporate unexpected events without major

disruptions. A different approach is represented by contingent scheduling techniques.

These techniques are based on attempting to anticipate likely disruptive events and

generating multiple schedules (or schedule fragment) which optimally respond to the

anticipated events. This is all done a priori so that at execution time a set of schedules

are available. Responding to unexpected (but anticipated) events and execution time

simply consists of switching to the schedule that corresponds to the events that have

occurred.

Just-in-Case Scheduling

Just-in-Case (JIC) scheduling (Drummond et al., 1994) is a technique for generat-

ing schedules in a domain where activities have uncertain durations, which can lead

to schedule breakage. It has been developed and applied in the domain of telescope

observation scheduling.

The telescope observation problem consist of a single resource, the telescope. Each

job is an observation task, which has a time window determined by the possible obser-

vation times for the task. The task durations are stochastic, modeled using a normal

distribution using statistics from previous execution data.

One way of dealing with duration uncertainty is to always assume the worst case:

set all task durations to their longest time possible and solve the resulting deterministic

duration scheduling problem. When some task finishes early, one introduces a “wait”

activity to fill up the remaining time. A weakness of this technique is that resource

usage may be very low as the duration is a worst-case estimate and therefore it is

likely that the resources will be idle for much of the time. An alternative is to initially

schedule with mean duration, to reassign the start time of tasks when some activity

takes longer than its mean duration to execute. If a breakage occur, that is, if any task

can no longer execute given its original time window, then rescheduling is performed.

This approach also results in idle time during rescheduling. The goal then is to avoid

schedule breakage without sacrificing schedule quality.
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Markov Decision Processes

The goal of Markov Decision Processes (MDPs), in its classical formulation, is to

find a policy, a mapping of state into actions, that maximize the objective function.

MDPs are discussed in more details in Section 4.7.2.

Discussion on Contingent Scheduling

Contingent scheduling coupled with probabilistic scheduling permits to model a

stochastic resource allocation problem early. In particular, uncertainty about actions

outcome and duration can be modeled, and a fast response is generated in the case of

action failures.

2.3.4 On-line/Off-line Approaches

The techniques discussed to this point have focussed on the generation of predictive

schedules that, in some way, take into account the uncertainty in the environment.

While some of them (e.g., the redundancy-based and the contingent techniques) assume

that some reasoning will have to be done at the time of schedule execution (e.g., shifting

tasks to take advantage of the slack time that was reserved of choosing one of the

contingencies), in general they are off-line techniques, minimizing the need for and the

complexity of on-line reasoning. In this section, we turn to work that has looked more

explicitly at off-line/on-line algorithms.

Russell and Norvig (2003) distinguish two types of search. Firstly, an off-line search

algorithm computes a complete solution before setting foot in the real world, and then

executes the solution without recourse to their percept. In contrast, an on-line search

agent operates by interleaving computation and action: first it takes an action, then it

observes the environment and computes the next action. On-line search is a good idea

in dynamic domains when there is a penalty for computing too long. On-line search is

an even better idea for stochastic domains. In general, an off-line search would have

to come up with an exponentially large contingency plan that considers all possible

happenings, while an on-line search needs only consider what actually does happens.

The work reviewed in this section does not necessary explicitly discuss both off-line

and on-line techniques but rather is considered from the perspective that both phases

are necessary even if only one is discussed. For example, the work on least and delayed

commitment scheduling, described in the next section, focusses on an off-line technique

without explicitly detailing an accompanying on-line technique. This is because a vari-

ety of on-line techniques are possible and that the theme of the work is, in the former

case, to make decision only when the appropriate level of information is available, and,
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in the latter case, to solve the off-line problem so that strong theoretical limits can be

placed on the amount of work required by an on-line phase. The other two pieces of

work discussed below present both off-line and on-line phases from the perspective of

artificial immune systems and from the perspective of decomposed Markov Decision

Processes.

Least Commitment and Delayed Commitment Scheduling

A common approach to off-line algorithms that specifically assume, but do not nec-

essarily define, an on-line counterpart is the least or delayed commitment scheduling

(Berry, 1993). In general, the two terms refer to the creation of a predictive sched-

ule that does not completely define all characteristics of all activities to be executed.

Rather, a set of constraints are added to the scheduling problem significantly narrow-

ing the search space that needs to be explored in an on-line phase. Least and delayed

commitment are based on the idea that decisions should not be taken where informa-

tion is incomplete or uncertain if it can be avoided. In highly uncertain environments,

it may be better to only generate predictive schedules for a short time in the future,

since they are highly likely to break soon anyway. On the other hand, in more certain

environments it may be useful to vary the level of commitment across the scheduling

horizon. In the near term, schedules are generated with a high level of commitment,

but further in the future weaker commitments are made which can be refined when

more information about the state of the world is known.

For example, a least/delayed commitment approach to job shop scheduling problem

is to post sequencing constraints between the tasks on each resource, rather than as-

signing specific start times. A single sequencing solution represents many possible start

time solutions. The actual start times of the tasks can be found with a polynomial

technique in the on-line phase which may take into account preferences and up-to-date

operating conditions on the shop floor. The sequence solution can absorb minor varia-

tions in schedule execution; for instance a task starting later than planned as a result of

an unplanned disruption may still be able to satisfy the sequencing constraints posted

in the scheduling solution.

Though we do not make a distinction between least and delayed commitment

scheduling in this thesis, there is often a subtle difference between the two approaches.

Least commitment scheduling typically provides a guarantee that at least one solution

exists in the search space defined by the predictive schedule while delayed commitment

scheduling provides no such guarantee.
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Artificial Immune Systems

A very different approach to off-line/on-line algorithms for robust scheduling

is a preliminary work that examines the creation of an artificial immune system

(Hart and Ross, 1999). The approach rests on the conjecture that the conditions under

which a new schedule is needed in response to some unexpected event in a factory are

to some extend predictable. For example, there may patterns of customer orders and

resource loads (perhaps depending on seasonality), there may be particular machine

that breakdown, or there may be factories from which deliveries are typically late (or

early). Furthermore, these patterns of events may have corresponding actions that can

be taken during rescheduling to minimize their impact. The reactions are actually the

partial schedules that are put in place during rescheduling. Therefore, the authors’

goal, is to use genetic algorithms to evolve a set of partial schedule (based on historical

schedule of a factory) that can be used as building blocks to respond to an unexpected

event. These schedule pieces encode some specific domain dependent knowledge about

reasonable schedule for the factory and therefore will significantly reduce the search

space required for rescheduling.

A set of schedule is therefore evolved, off-line, for each resource using a genetic

algorithm. The fragments are represented by a sequence of activities that can execute

on that resource plus a “wildcard” activity. The fitness criteria for the evolution involves

the matching of the fragment against historical schedules. A match occurs if some sub-

sequence of tasks in a fragment is found to exist in an historical schedule. The wildcard

task matches any task allowing the possibility of evolving more complex, non-contiguous

pattern. The on-line phase is then to combine the evolved sequences to form schedules

that are reactions to unexpected state of the factory. Since similar states are likely to

have been encountered in the past, a combination of the evolved sequences is likely to

encode a good schedule.

Markov Task Sets

Another off-line/on-line approach is the work by Meuleau et al. (1998). These au-

thors examined the modeling of resource allocation problems with Markov Decision

Processes (MDPs). In order to solve the problem beyond the tractability limit of stan-

dard MDP techniques the authors developed an approach in which the problem is first

decomposed so that the allocation for each target is solved to optimally independently

and then the individual solutions are greedily integrated to find a good, but not neces-

sarily optimal, global solution. More details on this approach is in Section 3.1.1.
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Discussion on On-line/Off-line Approaches

Delayed and least commitment scheduling together with problem decomposition

techniques such as Markov task sets would appear to be critical tools in dealing with

uncertainty. Indeed, the form of decomposition used in the Markov task sets work

can be seen as a form of delayed commitment scheduling: the integration of the sub-

problems is left until execution time when the information about the success or failure

of each task is available. Unless care is taken, however, these approaches can suffer from

the same drawback as the contingency-based techniques: the off-line schedule may not

produce enough information, for other, dependent tasks in the problem to create local

schedules. This is most apparent in the Markov task sets work as the off-line schedules

for each target may have little relation to the integrated schedule. The goal in the

off-line phase must be to make a sufficiently detailed schedule so as to serve as a basis

for dependant entities in the problem while maintaining enough flexibility to deal with

disturbances at execution time. Though works reviewed in this section has begin to

address this goal, it remains a challenging problem.

2.3.5 General Discussion

Probabilistic reasoning appears to be an important step in terms of bringing a level

of formality to reasoning about uncertainty in scheduling. Even if it is shown that exact

probabilistic guarantees of schedulability are intractable in practice, the very existence

of a formal theory will provide significant support on which approximation techniques

can be based. Of the approaches reviewed in this chapter and of which we are aware,

probabilistic reasoning appears to be the only one which may be able to be developed

into a formal theory.

As shown in the fault tolerant real-time scheduling field, redundancy technique can

provide tools for a significant simplification of both predictive robustness measures and

the complexity of rescheduling. It may be possible to achieve a high degree of formality

and still allow tractable schedule generation by combining redundancy techniques with

probabilistic reasoning.

There is clearly a need for both off-line, predictive/contingent techniques and on-

line, reactive techniques for dealing with uncertainty. The challenge is to have an off-line

technique which provides a flexible plan while having an on-line phase that can quickly

take near-optimal decisions.

This chapter presented different techniques for scheduling. The next chapter is

interested in the specific aspect of scheduling where there is uncertainty in the effect of

each actions undertook to execute the tasks.



Chapter 3

Task Planning Under Uncertainty

This thesis aims to contribute to solve complex stochastic resource allocation prob-

lems. In general, resource allocation problems are known to be NP-Complete (Zhang,

2002). In such problems, a scheduling process suggests the action (i.e. resources to

allocate) to undertake to accomplish certain tasks, according to the perfectly observ-

able state of the environment. When executing an action to realize a set of tasks, the

stochastic nature of the problem induces probabilities on the next visited state. In

general, the number of states is the combination of all possible specific states of each

task and available resources. In this case, the number of possible actions in a state

is the combination of each individual possible resource assignment to the tasks. The

very high number of states and actions in this type of problem makes it very complex.

The next section describes the planning approaches found in the literature to efficiently

allocate resources in this case.

3.1 Planning Approaches

Boutilier et al. (1999a) proposed a framework to classify various problems commonly

studied in the planning and decision-making literature. In each case below of this

framework, the modeling assumptions which define the problem class are specified.

Notice that in AI, problems involving a choice of actions are often regarded as planning

problems (Smith et al., 2000). Unfortunately, few AI planning systems could represent

constraints between actions, nor perform the desired reasoning and optimization. While

scheduling systems would have an easier representation of the time constraints and

resources, most of them could not deal with the action choices. In a sense, most

problems lies between planning and scheduling.
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3.1.1 Planning Problem in the Operation Research/Decision

Sciences Tradition

Markov Decision Processes (MDPs)

There is an extremely large body of research studying MDPs, and the basic algo-

rithmic techniques are presented in some detail in Section 3.1.1. The most commonly

used formulation of MDPs assumes full observability and stationarity, and uses as its

optimality criterion the maximization of expected total reward over a finite horizon,

maximization of expected total discounted reward over an infinite horizon, or mini-

mization of the expected cost to a goal state. MDPs were introduced by Bellman

(1957) and have been studied in depth in the fields of decision analysis and Operation

Research, including the seminal work of Howard (1960). MDPs are very suitable to

model a stochastic environment where the outcome of an agent’s action is probabilistic

and the environment is modified by some unpredictable exogenous events. For example,

suppose that missile launcher sometimes fails to launch a Surface Air Missile (SAM).

Thus, when the own platform aims to counter a threat (ta) with a SAM, it may or not

be able to execute this action. Part of the MDP process for this scenario is illustrated

in Figure 3.1.

0.9

0.1

LaunchSAM(       )
¬SAMLaunched(       ) SAMLaunched(        )

Figure 3.1: Model of an own platform which has a 90% probability to launch a SAM

missile.

An MDP is thus given by:

• A state space S.

• Actions A(s) ⊆ A applicable in each state s ∈ S.

• Transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s).

• Action costs C(a, s) > 0 and state rewards R(s) related to the problem.
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• A discount factor γ, which is a real number between 0 and 1. The discount factor

describes the preference of an agent for current rewards over future rewards

• A non empty set G ⊆ S of goal states.

In MDPs, the state s′ that results from an action a is not predictable but is

observable, providing feedback for the selection of the next action a′. As a result, a

solution of an MDP is not an action sequence, but a function π mapping states s into

actions a ∈ A(s). Such a function is called a policy. These policies are defined to be

applicable no matter what state (or distribution over states) one finds oneself in —

action choices are defined for every possible state or history.

Modeling a resource allocation decision-making problem as a MDP, implies that the

action space is defined by the resources available to the agent. In other words, an agent’s

MDP is parameterized by the available resources, and the agent’s utility for a particular

set of resources is defined as the expected value of the best policy that is realizable given

the actions that it can execute using these resources. Furthermore, a realistic agent has

inherent limitations that constrain the sets of resources it can make use of (and thus

what policies it can execute). For example, an airmail is limited by the number of planes

and available air routes to distribute its mail. Therefore, the problem of acting optimally

under the constraints of the agent’s inherent limitations arises. This problem has been

studied under various contexts and using different models of agents’ limitations — some

that directly restrict the agents’ policy or strategy spaces (Russell and Subramanian

(1995); Bowling and Veloso (2004)), and some that model agents’ limitations via the

concept of resources (Mausam et al., 2005). The latter approach typically makes more

detailed assumptions about the structure of agents’ constraints, which can often be

exploited in practical algorithms. As viewed from the perspective of modeling of the

agents’ limitations, our work falls into the latter, resource-centric category. An frequent

way of dealing with the complexity of resource allocation, decomposition techniques are

frequently used.

The Markov Decision Process (MDP) framework has been widely adopted by today’s

researchers to model a sequential and stochastic process. The choice is due to the fact

that MDPs provide a well-studied and simple, yet a very expressive model of the world.

Still, classical MDPs suffer from the so-called curse of dimensionality : the number of

states grows exponentially with the number of variables that characterize the planning

domain. Consequently, a polynomial time algorithm can be prohibitive for a real-time

application. This chapter exposes the Markov Decision Processes (MDPs) approach, as

well as modifications adopted to reduce its planning complexity.

The next sections describe in more details the MDPs characteristics. In particular,

the states and state transitions, the actions, the exogenous events, the utilities, reward

and costs are exposed. Afterwards, the dynamic programming approaches for solving
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MDPs, as well as the limitations of the original MDP formulation are detailed.

States and State Transition A state is a description of the system at a particular

point in time (Boutilier et al., 1999a). However, it is common to assume that the

state captures all information relevant to the agent’s decision-making process. For our

problem, we assume a finite state space S = {s1, ..., sN} of possible system states.

A discrete-time stochastic dynamic system consists of a state space and probability

distributions governing possible state transitions, i.e. how the next state of the system

depends on past states. These distributions constitute a model of how the system

evolves over time in response to actions and exogenous events, reflecting the fact that

the effects of actions and events may not be perfectly predictable even if the prevailing

state is known.

States should be thought of as descriptions of the system being modeled, so the

question arises of how much detail about the system is captured in a state description.

More detail implies more information about the system, which in turn often translates

into better predictions of future behavior. Of course, more detail also implies a larger

set S, which can increase the computational cost of decision making.

It is commonly assumed that a state contains enough information to predict the

next state. In other words, any information about the history of the system relevant to

predicting its future is captured explicitly in a state itself. Formally, this assumption,

the Markov assumption, says that knowledge of the present state renders information

about the past irrelevant to making predictions about the future:

P (s′|s0, s1, ..., sn) = P (s′|sn) (3.1)

The left member of this equation denotes the probability (P ) of being in a state s
′

depending of the history, starting in state s0 and ending at the actual state sn. The

equations states that state s′ depends only on state sn and not on all the history.

In this thesis, we generally restrict our attention to finite-state, stochastic dynamical

systems with the Markov assumption, commonly called Markov chains. Markovian

models can be represented graphically using a structure as depicted in Figure 3.1 which

reflects the fact that the current state is sufficient to predict future state evolution.

Actions A key element to MDPs is the set of actions available to the decision

maker. When an action is performed in a particular state, this state changes stochas-

tically in response to the action. We assume that the agent takes some action at each

stage of the process, and then the system changes state accordingly.

For each state s, the agent has an available set of actions A(s). This is called

the feasible set for s. To describe the effects of a ∈ A(s), we must supply the state-
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transition distribution Pa(s
′|s) for all actions a, states s. The terms Pa(s

′|s) are a family

of distributions parameterized by S and A(s).

Exogenous Events Exogenous Events are those events that stochastically cause

state transitions, much like actions, but beyond the control of the decision maker or

agent. These might correspond to the evolution of a natural process or the action of

another agent. We have two ways to model exogenous events. Firstly, we can use

an implicit-event model, where the effects of the exogenous event are folded into the

transition probabilities associated with the action. We often think of transitions as

determined by the effects of the agent’s chosen action and those of certain exogenous

events beyond the agent’s control, each of which may occur with a certain probability.

When the effects of actions are decomposed in this fashion, we call the action model an

explicit-event model.

Values, Rewards and Costs To decide which action to select at each stage,

the agent needs some way to judge the quality of a course of action. An agent act

in each state by maximizing its expected reward R(s) and/or minimizing its expected

cost C(a, s). This is done by defining a value function V (s) for each state. This value

function depends on an environment history h rather than on a single state. Roughly

speaking, the value of a state is the expected value of the state sequences that might

follow it until a goal state is reached.

The first question to answer is whether there is a finite horizon or an infinite horizon

value for decision making. A finite horizon value means that there is a fixed time N after

which nothing matters — the game is overs, so to speak. Thus Vh([s0, s1, ..., sN+k]) =

Uh([s0, s1, ..., sN ]) for all k > 0. For example, suppose an agent starts at s3 in the 4 × 3

world of Figure 3.2, and suppose N = 3. Then, to have any chance of reaching the +1

state, the agent must head directly for it, and the optimal action is to go Up. On the

other hand, if N = 100 then there is plenty of time to take a safe route by going Left.

So, with a finite horizon, the optimal action in a given state could change over time.

We say that the optimal policy for a finite horizon is nonstationary. With no fixed

time limit, on the other hand, there is no reason to behave differently in the same state

at different times. Hence, the optimal action depends only on the current state, and

the optimal policy is stationary. Policies for infinite-horizon case are therefore simpler

than those for the finite-horizon case. Note that “infinite-horizon” does not necessarily

mean that all state sequences are infinite; it just means that there is no fixed deadline.

In particular, there can be finite state sequence in an infinite-horizon MDP containing

a terminal state.

The next question to answer is to decide how to calculate the value of state se-

quence. It turns out that under stationarity there are just two ways to assign utilities
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0.10.1

0.8

AGENT

(a) A simple 4 X 3 environment that presents the agent with a sequential decision

problem. The two terminal states have reward +1 and -1, respectively, and all other
states have a reward of -0.04.
(b) Illustration of the transition model of the environment : the ‘‘intented’’ outcome

occurs with probability 0.8, but with probability 0.2 the agent moves at right angles
to the intended direction. A collision with a wall results in no movement.

(a)

(b)

Figure 3.2: An agent willing to maximize its expected reward (from Russell and Norvig

(2003)).
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to sequences:

1. Additive rewards: The value of a state sequence is:

Uh([s0, s1, s2, ...]) = r(s0) + r(s1) + r(s2) + ...

2. Discounted reward : The value of a state sequence is:

Uh([s0, s1, s2, ...]) = r(s0) + γ × r(s1) + γ2 × r(s2) + ...

where the discount factor γ is a real number between 0 and 1. The discount factor

describes the preference of an agent for current rewards over future rewards. When γ

is close to 0, rewards in the distant future are viewed as insignificant. When γ is 1,

discounted rewards are exactly equivalent to additive rewards, so additive rewards are

a special case of discounted rewards. Discounting appears to be a good model of both

animal and human preferences over time.

If the environment contains terminal states and if the agent is guaranteed to get one

eventually, then we can use the infinite horizon with additive rewards criterion. Indeed,

a policy that is guaranteed to reach a terminal state is called a proper policy. The

existence of improper policies can cause the standard algorithms for solving MDPs to

fail with additive rewards, and so provide a good reason for using discounted rewards.

The next section details dynamic programming which is usually used to solve an MDP.

Dynamic Programming Approaches Suppose that an MDP is given with a

state space S, action space A, a transition matrix Pa(s
′|s) for each action a, a re-

ward function R, and a cost function C. The main problem is to find the policy that

maximizes the expected total reward for the planning horizon. An example of a pol-

icy is given in Figure 3.3. Bellman’s principle of optimality (Bellman, 1957) forms

the basis of the stochastic dynamic programming algorithms used to solve MDPs. In

particular, the optimal value of a state is the immediate reward for that state plus

the expected discounted value of the next state transition probability, assuming that

the agent chooses the optimal action. That is, the value of a state when its expected

rewards are maximized is given by Russell and Norvig (2003).

V (s) = R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′) (3.2)

In the case where one reason on costs, the value of a state when its expected costs are

minimized is given by Bonet and Geffner (2001).

V (s) = min
a∈A(s)

[C(a, s) + γ
∑

s′∈S

Pa(s
′|s)V (s′)] (3.3)
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Finally, with costs and rewards, the following equation holds (Boutilier et al., 1999a)

V (s) = R(s) + max
a∈A(s)

[−(C(a, s)) + γ
∑

s′∈S

Pa(s|s
′)V (s′)] (3.4)

A concept that is often useful is that of a Q-function (or Q-value). Q(a, s) of each state

action pair using the following equation:

Q(a, s) = R(s) + γ
∑

s′∈S

Pa(s
′|s) max

a′∈A(s′)
Q(a′, s′) (3.5)

where the optimal value of a state is V ⋆(s) = max
a∈A(s)

Q(a, s) Intuitively, Q(a, s) denotes

the expected value of performing action a at states s (Watkins and Dayan, 1992).

An optimal policy for the stochastic environment

in the non terminal states.with

Figure 3.3: A policy for the example in Figure 3.2 (from Russell and Norvig (2003)).

Dynamic programming is said to be an implicit-enumeration approach because it

finds an optimal solution, to a given problem, without evaluating all possible solutions.

Once an optimal solution for a state is found, Bellman’s principle of optimality allows us

to infer that an optimal solution that reaches this state must include the solution that

is optimal for this state. Using Bellman’s principle of optimality to avoid enumerating

all possible solutions is sometimes called pruning by dominance. In particular, the

standards dynamic programming algorithms to solve an MDP are value iteration and

policy iteration. We now detail these two types of iterations.
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Value Iteration Equations 3.2, 3.3 and 3.4 form the basis of the value iteration

algorithm for solving MDPs. If there are n possible states, then there are n Bellman

equations, one for each state. The n equations contain n unknowns — the utilities of

the states. So, we would like to solve these simultaneous equations to find the utilities.

There is one problem: the equations are nonlinear, because the “max” operator is not a

linear operator. Whereas systems of linear equations can be solved quickly using linear

algebra techniques, systems of nonlinear equations are more problematic. One thing

to try is an iterative approach. The initial utilities are selected arbitrary. Afterwards,

the right-hand side of the equation is calculated, and plugged into the left-hand side —

thereby updating the value of each state from utilities of its neighbors. This operation is

repeated until an equilibrium is reached. Algorithm 3.1 taken from Russell and Norvig

(2003) describes the value iteration algorithm.

Algorithm 3.1 The value iteration algorithm for calculating utilities of states

(Bellman, 1957).

1: Function VALUE-ITERATION(S)

2: returns a value function

3: repeat

4: V ← V ′

5: δ ← 0

6: for all state s in S do

7: V ′(s)← R(s) + γ max
a∈A(s)

∑

s′
Pa(s

′|s)V (s′)

8: if |V ′(s)− V (s)| > δ then

9: δ ← |V ′(s)− V (s)|

10: end if

11: end for

12: until δ < ǫ

13: return V

If this algorithm is applied infinitely to an MDP, an equilibrium is guaranteed of be-

ing reached, in which case the final utilities must be solutions to the Bellman equations.

In fact, these are also the unique solutions, and the corresponding policy is optimal.

This algorithm propagates utilities from a state s to its neighbor states s′ iteratively.

Indeed, value iteration can be viewed as propagating information through the state

space by means of local updates. This algorithm terminates when the value change

between two iterations is bounded by a constant ǫ.

Policy Iteration Howard (1960)’s policy iteration algorithm is an alternative

to value iteration for solving MDPs. Rather than iteratively improving the estimated
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value function, it instead modifies the policies directly. It begins with an arbitrary

policy π, then iterate, computing π′ from π. The policy iteration algorithm alternates

the following two steps, beginning from some initial policy π:

• Policy evaluation: given a policy π, calculate V = V π, the value of each state if

π were to be executed.

• Policy improvement : calculate a new policy π′, using one-step look-ahead based

on V (as in Equation 3.2).

The algorithm terminates when the policy improvement step yields no change in its

utilities. At this point, we know that the value function V is a fixed point of the Bellman

update, so it is a solution to the Bellman equations, and π must be an optimal policy.

Because there are only finitely many policies for a finite state space, and each iteration

can be shown to yield a better policy, policy iteration must terminate. Algorithm 3.2

taken from Russell and Norvig (2003) details the policy iteration algorithm.

Algorithm 3.2 The policy iteration algorithm for calculating utilities of states

(Howard, 1960).

1: Function POLICY-ITERATION(S)

2: returns a policy

3: repeat

4: for all state s in S do

5: V (s)← R(s) + γ
∑

s′
Pπ(s)(s

′|s)V (s′)

{policy evaluation}

6: end for

7: unchanged← true

8: for all state s in S do

9: if max
a∈A(s)

∑

s′
Pa(s

′|s)V (s′) >
∑

s′
Pπ(s)(s

′|s)V (s′) then

10: π(s)← arg max
a∈A(s)

∑

s′
Pa(s

′|s)V (s′)

{policy improvement}

11: unchanged← false

12: end if

13: end for

14: until unchanged← true

15: return π

The important point of the policy iteration algorithm is that the equation are linear

for the policy evaluation part. Indeed, the “max” operator has been removed. For n
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states, we have n linear equation with n unknowns for this part of the algorithm. This

can be solved in time exactly O(n3) by standard linear algebra methods.

For small state spaces, policy evaluation using exact solution methods is often the

most efficient approach. For large state space, O(n3) time might be prohibitive. Also,

the policy improvement part of the algorithm is still nonlinear due to the presence of

the “max” operator. Our concern is to use MDPs for the resource allocation of a ship

which is a NP-Complete problem (Lloyd and Witsenhausen, 1986). The next section

details the limitation of an MDP approach to our problem.

Limitations of Original MDPs to Solve our Problem In Computer Science,

a polynomial algorithm is known to be effective. An exponential algorithm can cause

problems, especially for real-time, because it could take a long time to obtain a so-

lution. It is known that MDPs can be solved in polynomial time according to the

number of states, using algorithms like value iteration or policy iteration. However, the

complexity of general resource allocation problems leads to a large number of states

(Lloyd and Witsenhausen, 1986). Indeed, AI planning systems that solve MDPs are

faced with Bellman’s so-called curse of dimensionality (Bellman, 1957): the number of

states grows exponentially with the number of variables that characterize the planning

domain. Consequently, a polynomial time algorithm is prohibitive for computing the

policy of resource allocation problem.

Another major problem of MDPs is that the action space |A| is can be very high.

For a standard MDP approach, the number of actions to consider in a state is:

nbAgents
∏

i=1

nbChoicesi (3.6)

where nbChoicesi is the number of possible resource allocations for agent i, and

nbAgents is the number of agents. In this case, the value of all action combinations

of each resource have to be computed. For example, if in a specific state, three re-

source types are available, with ten possible actions for each resource type, there are

103 = 1 000 Q-values to compute for this state.

Thus the huge action and state spaces may be problematic to the attainment of a

solution in due time for a resource allocation problem. The next section describes a

resource allocation problem, which is very similar to our ship problematic. This simple

example is described to understand all the aspects of our problematic.

Decomposition Techniques

Another general method for tackling large stochastic problems is decomposition. A

decomposition aims at reducing the planning time to generate a solution to the problem.
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A decomposition can output an approximate or an optimal solution. If the decompo-

sition may generate an optimal solution, the problem must have some specific domain

dependent characteristics. The problem is either specified in terms of a set of “pseudo-

independent” sub processes or automatically decomposed into such sub processes.

These sub problems are then solved and the solutions to these sub problems are merged,

or used to construct an approximate global solution. These techniques can be divided

into two broad classes: those in which the state space of the problem is divided into re-

gions to form sub problems, so that the problem is the union (in a loose sense) of the sub

problems (Dean and Lin (1995); Precup and Sutton (1998); Laroche et al. (2001)); and

those in which the sub problems are treated as concurrent processes, with their (loosely)

cross-product forming the global problem (Singh and Cohn (1998); Boutilier et al.

(1997); Meuleau et al. (1998); Wu and Castanon (2004); Russell and Zimdars (2003);

Musliner et al. (2006)). Both these approaches offer great promise by allowing one to

solve sub problems that are exponentially smaller than the global problem. If these solu-

tions can be pieced together effectively, or used to guide the search for a global solution

directly, dramatic improvements in the overall solution time can be obtained. The next

section presents further simplifications to the problem model using characteristics to a

resource allocation problem.

The important consideration in choosing a decomposition is that it is possible to

represent each block compactly and to compute efficiently the consequences of moving

from one block to another and, further, that the subproblems corresponding to the

sub problems can themselves be solved efficiently. Chapter 6 presents three problem

decomposition techniques for our resource allocation problem. The next two sections

present the decomposition approaches by Meuleau et al. (1998) and Dolgov and Durfee

(2004).

Markov Task Sets Meuleau et al. (1998) present an approach for solving MDPs

where the problem is similar to ours. Furthermore, it was motivated by a military air

campaign planning problem in which the tasks correspond to targets, and in which

actions correspond to countering these target with weapons (missiles) transported in

planes. There are global constraints on the total number of weapons available as well as

instantaneous constraints (induced by the number of available planes) on the number of

weapons that may be deployed on any single time step. Actions have inherently stochas-

tic outcomes and the problem is fully observable. Thus, these problem characteristics

match perfectly with the type of problem tackled in this thesis.

In this context, Meuleau et al. (1998) presented an approach for solving this problem

using MDPs in which the subMDPs are treated as concurrent processes, with their

(loosely) cross-product forming the global MDP. Indeed, the problem of sequential

stochastic resource allocation is addressed. A number of different tasks, or objectives,
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must be addressed and actions consist of assigning various resources at different times

to each of these tasks. In addition, the state space of the MDP is assumed of forming

a number of features that, apart from resources, are relevant only to a specific task.

Furthermore, an assignment of resources to one task has no bearing on the features

relevant to any other task. This means that each task can be viewed as an independent

subprocess whose rewards and transitions are independent of the others, given a fixed

action or policy (assignment of resources).

As a matter of fact, even this degree of independence does not generally make it

easy to find an optimal policy. Resources are usually constrained, so the allocation of

resources to one task at a given point in time restricts the actions available for others

at every point in time. Thus, a complex optimization problem remains. If there are

no resource constraints, the processes are completely independent. They can be solved

individually, and an optimal global solution determined by concurrent execution of the

optimal local policies; solution time is determined by the size of the subMDPs. With

resource constraints, local optimal solutions can be computed, but merging them is now

nontrivial. The question of how best to exploit local solutions to determine a global

policy is the subject of the Meuleau et al. (1998) paper. They affirm that, for resource

allocation problems, the action space is extremely large (every possible assignment of

resources to tasks), making other standard approximation methods, such as neurody-

namic programming (Bertsekas and Tsitsiklis (1996); Scherrer (2004)), unsuitable.

A hallmark of the heuristic algorithms described by Meuleau et al. (1998) is their

division into two phases. An off-line phase computes the optimal solutions and value

functions for the subMDPs associated with individual tasks. In an on-line phase,

these value functions are used to compute a gradient for a heuristic search to assign

resources to each task based on the current state. Once an action is taken, these resource

assignments are reconsidered in light of the new state entered by the system. As for,

Markov Task Sets (MTSs) is introduced by Meuleau et al. (1998) based on the MDP

model.

A Markov task set (MTS) of n tasks is defined by a tuple 〈S, A, R, T, c, Ml, Mg〉,

where

• S is a vector of state spaces, s1, ..., sn, where each si is the set of primitive state(s)

of Markov task i.

• A is a vector of action spaces, a1, ..., an, where each ai is a set of integers from 0

to some limit, describing the allocation of an amount of resource to task i.

• R is a vector of reward functions r1, ..., rn, where ri : si × ai × s′i × T ime → R,

specifying the reward conditional on the starting state, resulting state and action

at each time.
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• T is a vector of state transition distributions, T1, ..., Tn, where Ti : si × ai × s′i →

[0, 1], specifying the probability of a task entering a state given the previous state

of the task and the action;

• c is the cost for using a single unit of the resource.

• Ml is the instantaneous (local) resource constraint on the amount of resource that

may be used on a single step.

• Mg is the global resource constraint on the amount of the resource that may be

used in total.

The state space, for a finite planning horizon H , consists or the cross product of the

individual state spaces and the available resources; the action space is the set of resource

assignment, with an assignment being feasible at a state only if its sum exceeds neither

Ml nor Mg. Instead of formulating this “flat” MDP explicitly, the factored form is

retained as much as possible. The goal, then, is to find an optimal non-stationary

policy π∗ = 〈π0, ..., πH−1〉, where πt = 〈πt
0, ..., π

t
n〉 and each πt

i : S → Ai is a local policy

for task i, that maximizes

E

[

n
∑

i=1

Ppii(s
′
i|si)Ri(si, πi(s))− c× πi(s)

]

(3.7)

subject to the constraints
n

∑

i=0

πi(s) 6 Ml

and
n

∑

i=1

πi(s) 6 Mg

Finding an optimal policy is a very hard problem even for small MTSs, because the

equivalent MDP is very large. It is, for all practical purposes, impossible to solve exactly

unless the number of tasks, the individual state spaces and the available resources are

very small. The major source of difficulty is that the decision to apply a resource to

a given task influences the availability of that resource (either now or in the future)

for other tasks. Thus, the tasks, while exhibiting tremendous independence, still have

strongly interacting solutions. A “local policy” for each task must take into account

the state of each of the other tasks, precluding any state space reduction in general.

Meuleau et al. (1998) their attention to approximation strategies that limit the scope

of these interactions. They use an approximation strategy for MTSs called Markov

Task Decomposition (MTD). The MTD method is divided into two phases. In the first,

off-line phase, value functions are calculated for the individual tasks using dynamic
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programming. In the second, on-line phase, these value functions are used to calculate

the next action as a function of the current state of all processes.

The results of MTD shows that it can solve a problem in much less time than

standard dynamic programming but with a little reduction in effectiveness. Indeed,

the optimal Bellman equations indicate that an optimal allocation ai must not only

take into account the future course of task i, but also reason about future contingencies

regarding other tasks, and assess the value of reallocating some of these resources to

other tasks in the future.

Multiagent Operational Constrained MDP (M-OPER-CMDP) At a high

level, Dolgov and Durfee (2004) are interested in problems where the agents have a set

of actions that are potentially executable, but each action requires a certain combination

of resources. The amount of these shared resources is limited. Furthermore, each agent

has constraints as to what resources it can make use of (for example, what equipment

it can be outfitted with). In their model, execution begins with a distribution of the

shared resources among the agents. Any resulting resource allocation must obey the

constraints that no shared resource is over-utilized, i.e., the amount of all resources that

are assigned to the agents does not exceed the total available amount. Furthermore,

the assignment must satisfy the local constraints of the agents as to the resources that

they can use. For example, it is useless (and thus essentially invalid) to assign to an

agent more equipment than it can carry. Once the shared resources are distributed

among the agents, they should use these resources to carry out their policies in such

a way that the social welfare of the group (sum of individual rewards) is maximized.

This technique can be modeled using Multiagent MDPs (MMDPs) (Boutilier, 1999).

In brief, the type of problem considered by Dolgov and Durfee (2004) is the same

as the used in this thesis with one distinction: The allocation of resources are episodic,

not sequential. Thus, the optimal policy contains decision to allocate the resources to

a group of agents in a single stage, it does not consider reallocation. In particular,

Dolgov and Durfee (2004) present a method that does not sacrifice optimality and, by

fully exploiting the structure of the problem, makes it possible to solve problems orders

of magnitude larger than what is possible using traditional multiagent MDP (Boutilier,

1999) techniques. Unlike the standard decomposition techniques, they do not divide

the problem into subproblems and then recombine the solutions such as Meuleau et al.

(1998) did. Instead, they formulate one policy optimization problem with constraints

that ensure that the policies do not over-consume the shared resources.

More generally, it is often the case that an agent has many capabilities that are

all in principle available to it, but not all combinations are realizable within the archi-

tectural limitations, because choosing to enable some of the capabilities might usurp

resources needed to enable others. In other words, a particular policy might not be
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operational because the agent’s architecture does not support the combination of ca-

pabilities required for that policy. If this is the case, we say that the agent exhibits

operationalization constraints.

Let us now consider a multiagent environment with a set of n agents M , each

of whom has its own set of states Sm and actions Am. In general, for a multiagent

MDPs, we have to define a new state space that is the cross-product of the state spaces

of all agents: S(M) = Sn, and a new action space that is the cross-product of the

actions spaces of all agents: A(M) = An. The transition and reward functions are

defined on the new state and action space, i.e., P (M) : Sn × An × Sn → [0, 1], and

R(M) : Sn × An → R. However, there is a large subclass of multiagent domains

where the agents’ rewards and transition functions are independent of each other, i.e.,

such problems are completely separable if there are no shared resources involved. The

approach proposed by Dolgov and Durfee (2004) assume that once the shared resources

are distributed, the agents operate completely independently of each other. In other

words, each agent has its own independent reward and transition functions defined on

S and A.

Under the above independence assumptions, a joint policy of the group is simply

the set of single-agent policies of all agents.

The multiagent policy optimization under limited shared resources problem can

now be defined (Dolgov and Durfee, 2004). Let us say that there are several shared

resources, and that every action of each agent requires some subset of these resources.

Furthermore, all resources have costs associated with them and agents have upper

bounds on the costs of resources that can be allocated to them. For example, a problem

might involve shared equipment (e.g., tools) that enables agents to execute various

actions, but each unit of equipment has some costs associated with it (e.g., weight),

and the agents have upper bounds on how much weight they can carry. Under these

conditions, the multiagent optimization constraint problem (M-OPER-CMDP) can be

formulated as a tuple 〈S, A, P, R, C, Ĉ, Q, Q̂, α〉 where:

• S is a finite set of states.

• A is a finite set of actions.

• P m : S×A×S → [0, 1] defines the transition function for agent m. The probability

that agent m goes to state s′ if it executes action a in state s is P m
a (s′|s).

• Rm : S × A → R defines the rewards that agent m receives. Agent m gets a

reward of Rm
a (s) for executing action a in state s.

• Cm, where Cm
ak = {0, 1} defines action resource requirements. If agent m needs

resource k to be able to execute action a, Cm
ak = 1; otherwise Cm

ak = 0.
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• Ĉ defines the total amount of shared resources that are available to the group,

i.e., there are Ĉk units of resource k available to the agents.

• Q defines the costs (weight, money, etc.) of each resource. The cost of type l of

a unit of resource k is given by Qkl.

• Q̂m defines the upper bounds on how much of the costs the agent can incur (e.g.,

how much weight the agent can hold or how much money it can spend). Agent

m cannot exceed Q̂m
l units of cost of type l.

• αm is the initial probability distribution. The probability that agent m starts in

state i is αm
i .

Dolgov and Durfee (2004) assume that the action space A and the state space S are

the same for all agents. The goal of the optimization problem is to find a joint policy

π(M) that yields the highest expected reward, under the conditions that the shared

resources are not over-utilized, and that no agent is assigned more resources than it can

hold. In other words, we have to solve the following (abstract) math program:

max V (π, α)

∣

∣

∣

∣

∣

∣

∣

∣

∑

m

θ

(

∑

a

Cm
ak

∑

s

πm
ia

)

6 Ĉk,

∑

k

Qklθ

(

∑

a

Cm
ak

∑

s

πm
ia

)

6 Q̂m
l

(3.8)

where θ is a “step” function of a non-negative argument, defined as:

θ(z) =

{

0 if z = 0

1 if z > 0

The first constraint in Equation 3.8 means that the total amounts of resources that are

needed by all agents do not exceed the total amounts that are available. Indeed,
∑

s πm
ia

is greater than zero only if agent m plans to use action a with nonzero probability.

Thus,
∑

a Cm
ak

∑

s πm
ia is greater than zero when the agent plans to use actions that

require resource k, in which case:

θ
(

∑

a

Cm
ak

∑

s

πm
ia

)

= 1,

, and the first summation over all agents m gives the total requirements for resource k,

which should not exceed Ĉk. The second constraint is analogous to the first one and

has the meaning that the cost of type l of the resources assigned to agent m does not

exceed its cost bounds Q̂m
l .

Dolgov and Durfee (2004) solves this math problem using a mixed integer linear

program which allows to make use of a variety of highly optimized algorithms and

tools for solving integer programs. Their approach offers an significant reduction of
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the time to produce a solution compared to the traditional multiagent MDP approach.

Dolgov and Durfee (2004) propose that their work could be greatly extended by com-

bining it with an abstraction approach such as the one proposed by Boutilier et al.

(2000). However, the authors state that it would involve overcoming several challenges,

the most important of which is probably the following. Just like the majority of meth-

ods for solving unconstrained MDPs, the existing methods that work with compact

problem representations rely on Bellman’s principle of optimality, which states that the

optimal action for each state is independent of the optimal actions chosen for other

states. However, this principle no longer holds when global constraints are imposed on

agents’ policies. Indeed, enabling an optimal action for one state might consume lim-

ited resources, making the optimal action for another state infeasible. Overcoming such

difficulties in an attempt to combine compact MDP representations and a constrained

optimization ideas is a great direction to work on.

Also, MDPs can be solved efficiently using heuristic search, which is described in

detail in Section 5.1.

Partially Observable Markov Decision Processes (POMDPs)

Partially Observable Markov Decision Processes (POMDPs) are closer than MDPs

to the general model of a decision processes. POMDPs have generally been studied

with the assumption of stationarity and optimality criteria identical to those of MDPs.

In brief, a POMDP can be viewed as an MDP with a state space consisting of the set

of probability distributions over S. These probability distributions represent states of

belief: the agent can “observe” its state of belief about the system although it does not

have exact knowledge of the system state itself.

POMDPs provide a natural and expressive framework for decision making, but

their use in practice has been limited by the lack of scalable solution algorithms. Two

important sources of intractability plague discrete model-based POMDPs: high dimen-

sionality of belief space, and the complexity of policy or value function space. Classic

solution algorithms (Cassandra et al. (1997); Kaelbling et al. (1998); Hansen (1998)),

for example, compute value functions represented by exponentially many value vec-

tors, each of exponential size, according to the number of states. As a result, they

can only solve POMDPs with on the order of 100 states. Consequently, much re-

search has been devoted to mitigating these two sources of intractability. The com-

plexity of policy/value function space has been addressed by observing that there are

often very good policies whose value functions are representable by a small number of

vectors. Various algorithms such as approximate vector pruning (Hansen and Feng,

2001), point-based value iteration (PBVI) (Pineau et al. (2003); Spaan and Vlassis

(2004)), bounded policy iteration (BPI) (Poupart and Boutilier, 2004), gradient as-

cent (GA) (Meuleau et al. (1999); Aberdeen and Baxter (2002)) and stochastic local
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search (SLS) (Braziunas and Boutillier, 2004) exploit this fact to produce (often near-

optimal) policies of low complexity (i.e., few vectors) allowing larger POMDPs to be

solved. Still these scale to problems of only roughly 1000 states, since each value

vector may still have exponential dimensionality. Conversely, it has been observed

that belief states often carry more information than necessary. Hence, one can of-

ten reduce vector dimensionality by using compact representations such as decision

trees (DTs) (Boutilier and Goldszmidt, 1996), algebraic decision diagrams (ADDs)

(Hansen and Feng, 2001), or linear combinations of small basis functions (LCBFs)

(Guestrin et al., 2001), or by indirectly compressing the belief space into a small sub-

space by a value-directed compression (VDC) (Poupart and Boutilier, 2003) or expo-

nential PCA (Roy and Gordon, 2002). Once compressed, classic solution methods can

be used. However, since none of these approaches address the exponential complex-

ity of policy/VF space, they can only solve slightly larger POMDPs (up to 8250 states

(Roy and Gordon, 2002)). Scalable POMDP algorithms can only be realized when both

sources of intractability are tackled simultaneously. While Hansen and Feng (2001) im-

plemented such an algorithm by combining approximate state abstraction with approx-

imate vector pruning, they didn’t demonstrate the scalability of the approach on large

problems. Furthermore, Poupart and Boutilier (2004) describe how to combine value

directed compression (VDC) with bounded policy iteration (BPI).

They demonstrate the scalability of the resulting algorithm (VDCBPI) on synthetic

network management problems of up to 33 million states. Among the techniques that

deal with the curse of dimensionality, VDC offers the advantage that the compressed

POMDP can be directly fed into existing POMDP algorithms with no (or only slight)

adjustments. This is not the case for exponential-PCA, nor compact representations

(DTs, ADDs, LCBFs). Glazebrook and Washburn (2004) overview works on ”shoot-

look-shoot-” strategies in the presence of imperfect target status knowledge. The finite

horizon, which is the case where the number of weapon is constrained is not even tack-

led their paper. Thus, much work has to be done in this field. Indeed, we would have to

improve this research field to efficiently use POMDPs for our complex real-time prob-

lem. This open the door for many research avenues, such as learning, approximation,

heuristic search, and so on. The next section introduces planning problems from the

artificial intelligence domain.

3.1.2 Planning Problem in the AI Tradition

Deterministic Planning

The classical AI planning model assumes deterministic actions: any action a taken

at any state s has at most one successor s′. The other important assumptions are

non-observability and that value is determined by reaching a goal state: any plan that
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leads to a goal state is preferred to any that does not. Often there is a preference for

shorter plans; this can be represented by using a discount factor to “encourage” faster

goal achievement or by assigning a cost to actions. Reward is associated only with

transitions to goal states, which are absorbing1. Action costs are typically ignored,

except as noted above.

In classical planning models it is usually assumed that the initial state is known

with certainty. This contrasts with the general specification of MDPs above, which

does not assume knowledge of or even distributional information about the initial state.

Knowledge of the initial state and determinism allow optimal straight-line plans to be

constructed, with no loss in value associated with non-observability, but unpredictable

exogenous events and uncertain action effects cannot be modeled consistently if these

assumptions are adopted.

The optimal deterministic planning paradigm augment this formalism to generate

a plan which maximizes (or minimizes) a certain objective function. Furthermore, the

classical planning assumption of omniscience can be relaxed somewhat by allowing the

state of some aspects of the world to be unknown. The agent is, thus, in a situation

where it is certain that the system is one of a particular set of states, but does not know

which one. Unknown truth values can be included in the initial state specification,

and taking actions can cause a proposition to become unknown as well. Conditional

deterministic planners were introduced to consider this problem (Pryor and Collins,

1993).

Probabilistic Planning

A direct probabilistic extension of the classical planning problem can be stated

as follows: take as input (a) a probability distribution over initial states, (b) stochastic

actions, (c) a set of goal states, and (d) a probability success threshold τ . The objective

is to produce a plan that reaches any goal state with probability at least τ , given the

initial state distribution. No provision is made for execution-time observation, thus

straight-line plans are the only form of policy possible. This is a restricted case of the

infinite-horizon MDP problem, one in which actions incur no cost and goal states offer

positive reward and are absorbing. It is also a special case in that the objective is to

find a satisfying2 policy rather than an optimal one.

Draper et al. (1994) have proposed an extension of the probabilistic planning prob-

lem in which actions provide feedback, using exactly the observation model used by an

MDP. Again, the problem is posed as that of building a plan that leaves the system

1Once an agent enters a closed set or absorbing state, it remains there forever with probability 1

(Boutilier et al., 1999a).
2A satisfying policy is one which have a probability of success at least τ (Boutilier et al., 1999a)
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in a goal state with sufficient probability. But a plan is no longer a simple sequence

of actions — it can contain conditionals and loops whose execution depends on the

observations generated by sensing actions. This problem is a restricted case of the

general POMDP problem: absorbing goal states and cost-free actions are used, and

the objective is to find any policy that leaves the system in a goal state with sufficient

probability.

Contingency Planning

Majercik and Littman (2003) makes a distinction between conditional planning and

contingent planning. In conditional planning, the effects, but not the execution, of

actions are contingent on the outcome of previous actions. In contingent planning,

both the effects and execution of actions are contingent on the outcomes of previous

actions. Thus, in contingent planning, the agent can make observations and construct

a branching plan in which actions are made contingent on these observations. Without

the ability to observe its environment and condition its actions accordingly, an agent

can only execute a straight-line plan, a simple non-contingent sequence of actions, and

hope for the best. Such a plan can also be called “open loop”, in contrast to “closed

loop” plans that condition action choices on run-time observations.

In previous work, a contingency planner using a greedy algorithm improved with a

tabu search heuristic was considered (Plamondon (2003); Soucy (2003)). This approach

produced good results in a short time but it has two main inconvenient. Firstly, when

computing the solution, the algorithm does not know how far it is form the optimal

one. Indeed, it does not even know if it as found an optimal solution. Also, no efficient

representation of a sequential environment is made, which dynamic programming does

successfully. Thus, when the planning horizon is high, the number of possible allocations

is very high for tabu search.

3.2 Planning Approaches for Resource Allocation

The problem of resource allocation among multiple self-interested agents is

ubiquitous, with applications ranging from decentralized scheduling (Wellman et al.,

2001) and network routing (Feldmann et al., 2003) to transportation logistics

(Sheffi (2004); Song and Regan (2002)) and bandwidth allocation (McMillan (1994);

McAfee and McMillan (1996)), just to name a few. A lot of work in this setting has

focused on the problem of mechanism design (Mas-Colell et al., 1995), the goal of which

is to create mechanisms that allocate the resources to the agents in ways desirable to

the system-designer, given that each participating agent is selfishly maximizing its own

utility. In the next section, we introduce some general considerations on planning.



CHAPTER 3. TASK PLANNING UNDER UNCERTAINTY 40

3.2.1 General Considerations on Planning for Resource Allo-

cation

In general, there are two known approaches for allocating resources to tasks

(Hosein and Athans, 1990). Firstly, the episodic approach which uses all the avail-

able resources simultaneously. Secondly, the sequential version, as used in this thesis,

which extends the episodic version by having a number of stages in the scenario. In this

last context, the planning process is allowed to observe the outcomes of all engagements

of the previous stage before assigning and committing resources for the present stage.

This approach uses fewer resources and has a higher expectation to achieve the tasks

than the episodic approach.

Resource allocation problems are known to be NP-Complete (Zhang, 2002). Since

resources are usually constrained, the allocation of resources to one task restricts the

options available for other tasks. The complexity of this problem is exponential ac-

cording to the number of resources and tasks, and many approximations and heuristics

have been proposed (Meuleau et al. (1998); Wu and Castanon (2004); Aberdeen et al.

(2004)). An effective approach is to plan for the resources separately as proposed by

Wu and Castanon (2004). Wu and Castanon formulates a policy for each resource and

a greedy global policy is produced by considering each resource in turn, producing an

approximate policy. Their coordination rules are, however, sometimes very specific to

the problem’s characteristics.

Russell and Zimdars (2003) propose another central agent coordination scheme.

Their Q-Decomposition Reinforcement Learning coordination process determines the

Q-values which maximize the sum for each states at each learning iteration. An im-

portant assumption of this method is that each agent should have its own independent

reward function. Thus, for a resource allocation problem, there would have an agent

for each task to achieve.

Since resources have local and global resource constraints on the number

that be used, the problem here can be viewed as a constrained Markov de-

cision process (Bertsekas (2005); Feinberg and Shwartz (1996); Dolgov and Durfee

(2004); Altman (1999)). In this context, dynamic programming (Bertsekas (2005);

Feinberg and Shwartz (1996)) or linear programming (Dolgov and Durfee, 2004) may

be used to obtain a policy.

Boukhtouta (2002) investigated which type of planning approach should be used

in military operations. In his paper he compared two main approaches to solve a de-

cision problem, the conventional planning and the Markov Decision Processes (MDPs)

approaches. In a complex dynamic military environment, it could be difficult to elab-

orate an initial plan which contains all the response to every contingencies that could

arise. Many planning paradigm used a replanning approach to overcome this prob-
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lem. In particular, the conventional planning Operational Research (OR) approaches

mainly use replanning-based methods to deal with uncertainty. Replanning approaches

have been used in developing many military planners. DART (Dynamic Analysis and

Replanning Tool), TARGET (Theatre-level Analysis, and Graphical Extension Tool-

box)3, and Cypress-SIPE2 (Wilkins et al., 1995) are military system planners that use

the replanning approach. Moreover, many decision-support planners have been model

as a Constraint Satisfaction Problem (CSP) (Zweben and Fox (1994); Mailler et al.

(2003)). However, the naive constraint propagations methods are not formulated to

handel stochastic problems. They have been modified for stochastic problems but it

replans at every step, and its policy does not consider the fact that it will be able to

replan in the future.

Ultimately, Boukhtouta concluded that conventional OR planning is insufficient to

model subtlety many military planning problems. However, planning methods based on

MDP or a POMDP can be used to develop more sophisticated planners. An MDP style

approach seems more efficient than conventional planners. The MDP specifies a closed-

loop policy that makes optimal decisions with full foresight of the remaining uncertainty

of the military problem. Conventional planning methods based on replanning cannot

provide such a solution. Although MDPs and POMDPs are promising tools to use in

developing planners, they suffer from the so-called curse of dimensionality (Bellman,

1957): the number of states grows exponentially with the number of variables that

characterize the planning domain. Consequently, a polynomial time algorithm can be

prohibitive for a real-time application. However, many strategies can be adopted to

overcome this (see Boutilier et al. (1999a) for a general overview).

In other related works, Chalmers (1995) presents a model of a deliberative planning

function embedded in a real-time layered control architecture for a weapon engagement

manager in a naval AWW system. This work aims at producing an efficient system

for threat evaluation and weapon assignment. We should note that computing an

optimal plan is NP-hard, which makes it impossible to guarantee optimal response

within real-time deadlines. To overcome this, Chalmers (1995) outlined an adaptive

approach based on knowledge compilation done a priori, and classification of battle

scenarios done with an anytime planner which permits a resource-limited agent to

generate effective plans. Missions goals may include: maximize threat value destroyed

(subtractive defence), maximize value of surviving assets (preferential defence), and

minimize wastage of missiles.

Design-to-time scheduling (Garvey et al. (1993); Garvey and Lesser (1993)) could

be a viable approach to model our resource allocation problem. In brief, design-to-time

scheduling includes a set of task to realize and a set of methods to realize these tasks.

Each methods are associated a quality and a duration to execute each task. The term

3DART and TARGET are developed by BNN Technologies for the U.S. Department of Defence
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quality summarizes several possible properties of actions or results in a real system:

certainty, precision and completeness of a result. There are interactions among the

tasks. For example, if the execution of task ta1 is made before the execution of task

ta2, ta1 may increase or decrease the qualities and durations of some methods associated

to ta2.

For example, for resource allocation of a ship to counter incoming missiles, the tasks

are the missiles attacking ownship. Also, the set of methods associated to a task ta

are all the possible resource allocations which the ship can perform to execute ta. In

its initial form, design-to-time scheduling was developed for deterministic and episodic

problems. Since our problem is stochastic and sequential, the initial form of design-to-

time scheduling cannot be used as a modeling tool in this thesis.

A good recent extension of design-to-time scheduling was proposed by Ramsauer

(2002). This extension considers that each action can have an uncertain ending time.

In particular, he has discretized the ending time of an action in different possible ending

times. The more the action space is discretized, the more the branching factor and the

computing time to generate a solution augments. We will talk in Section 7.7.3 that

discretizing the action time can be very useful in our works.

A major drawback of design-to-time scheduling is its ability to represent effectively

a stochastic environment. Indeed, by accumulating tasks qualities using maximum and

minimum functions, the resulting root task quality does not represent an expectation

of the number of tasks that are going to be realized, like MDPs do. For this reason,

design-to-time scheduling does not consider well the case where multiple methods can

be used simultaneously to execute a task, where each method has a certain probability

to execute the task.

On the other hand, in an MDP, the optimal value represents the reward an agent

is expected to obtain by executing the current policy. We think an MDP matches

more with our problem than design-to-time scheduling for this reason. However, when

merged with MDPs, as done by Musliner et al. (2006) the resulting framework seems

pretty effective. But, the complexity of the framework is the same as using MDPs only.

Thus, in our opinion, MDPs is a more viable tool than design-to-time scheduling to

model a stochastic resource allocation problem.

Furthermore, a rollout algorithm (Bertsekas, 2005), which is an approximation of

dynamic programming, could be used to model our problem. In this algorithm, the value

of the states are initialized using a lower bound heuristic and a backup is performed on

reachable states until a certain depth is reached. The value of the further states can be

approximated using monte-carlo simulation. We further discuss the rollout algorithm

in Section 5.2.7.
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3.3 Conclusion

In this context, a literature review for the specific problem of task planning under

uncertainty has been given. Firstly, we have detailed the main planning approaches

in the operation research and artificial intelligence tradition. Then, specific planning

approaches for naval environments are detailed. In this context, the Weapon-Target

Assignment (WTA) problem, the coordination problem and the movement problem are

described.

The next chapter describes a very simple resource allocation problem to better

understand the type of problem we are interested in. We also model this problem with

Markov Decision Processes.



Chapter 4

Command and Control Systems:

The Resource Allocation Problem

4.1 Introduction

In Section 3.1, we said that most problems lies between planning and scheduling.

Scheduling, introduced in Chapter 2, is efficient in problems where there are constraints

and resources, while planning, described in Chapter 3, is efficient in problems where

there are a high number of possible actions. In this section, we present a problem which

has constraint on resources and a high number of possible actions, thus requiring both

planning and scheduling.

Our problem of interest, described in Section 4.3.2, are maritime environments

which are known to be very complex environments with tight real-time constraints. In

case of an own platform attack, the commander must make fast decisions by considering

several factors to ensure himself of the best possible survival of the own platform and its

crew. Under such real-time constraints, it can often happen that the commander makes

errors because of the complexity of the environment or the stress which the situation

can generate. In these conditions, a computer is tremendously faster than a human and

consequently, it can suggest decisions in time thus facilitating the task of a commander.

As demonstrated in Section 4.3.2, our problem of interest falls into the partially

observable, stochastic, sequential, dynamic, discrete, and multiagent case. However, our

problem of interest is very complex and modeling a problem with all its subtleties would

be very time consuming. We designed a simplified problem version which permit us

to concentrate our energy on specific parts of the problem. This simplified problem is

presented in Section 4.7.
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4.2 Problem Example

A simple resource allocation problem is one where there are the following two tasks

to realize: ta1 = {wash the dishes}, and ta2 = {clean the floor}. These two tasks

are either in the realized state, or not realized state. To realize the tasks, two type

of resources are assumed: res1 = {brush}, and res2 = {detergent}. A computer has

to compute the optimal allocation of these resources to cleaner robots to realize their

tasks. In this problem, a state represents a conjunction of the particular state of each

task, and the available resources. The resources may be constrained by the amount

that may be used simultaneously (local constraint), and in total (global constraint).

Furthermore, the higher is the number of resources allocated to realize a task, the

higher is the expectation of realizing the task. For this reason, when the specific states

of the tasks change, or when the number of available resources changes, the value of

this state may change.

When executing an action a in state s, the specific states of the tasks change stochas-

tically, and the remaining resource are determined with the resource available in s,

subtracted from the resources used by action a, if the resource is consumable. Indeed,

our model may consider consumable and non-consumable resource types. A consumable

resource type is one where the amount of available resource is decreased when it is used.

On the other hand, a non-consumable resource type is one where the amount of avail-

able resource is unchanged when it is used. For example, a brush is a non-consumable

resource, while the detergent is a consumable resource.

The system is in a state s with a set of task Ta to realize, and a set Res of resource

available. A possible action in this state may be to allocate one unit of detergent to task

ta1, and one brush to task ta2. The state of the system changes stochastically, as each

task’s state does. For example, the floor may be clean or not with a certain probability,

after having allocated the brush to clean it. In this example, the state of the tasks may

change, for example, in n new possible combinations. For all these n possible state

transitions after s, the consumable resources available (Resc) are Resc \ res(a), where

res(a) is the consumable resources used by action a. We now introduce Command and

Control Systems which is the general problem which lead to this thesis.

4.3 Command and Control (C2) Systems

4.3.1 Overview

The increasing difficulty and diversity of open-ocean and littoral (i.e. near land) sce-

narios, and the volume of data of imperfect nature to be processed under time-critical
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conditions pose significant challenges for future shipboard command and control sys-

tems and the combat system operators who must use these systems to defend their ship

and fulfil their mission (Chalmers, 1997). For this thesis, we see the command and

control system as a subsystem at the heart of a ship’s combat system which includes

various other subsystems like weapon and sensor systems, a navigation system, and an

environment monitoring system. The command and control system provides automated

capabilities to allow operators to use the fighting resources of a ship. However, current

operational systems generally provide little support for tactical decision making in com-

plex, highly dynamic scenarios where time for decision making and action execution is

at premium. The need for such support is very pressing given the current emphasis on

littoral warfare that results in reduced reaction times and the need to deal quickly and

correctly with complex rules of engagements designed to increase efficiency of fighting

resources and avoid undesirable consequences (Liang, 1995).

The Defence R&D Canada DRDC-Valcartier team, with their collaborators, have for

several years now been investigating methods to augment or enhance existing command

and control system capabilities— by continuously fusing data from a ship’s sensors and

other sources, dynamically maintaining a tactical picture, and supporting response to

actual or anticipated threats.

DRDC (http://www.drdc-rddc.dnd.ca/) has been created in 1945. Its mission is

to improve Canada’s defence capability through research and development, e.g. ex-

pert counselling, development of improved operational capacities, monitoring of new

technological developments, and technology transfer. Now a mainstay of Defence R&D

Canada — an agency of the department of national defence — the center has resolutely

brought itself into line with the new economic realities. It has abandoned its former

organizational structure and embraced a new, more promising modus operandi. The

emphasis is now on partnership with industry and universities. DRDC-Valcartier’s sci-

entists are striving to advance defence technology, to extend the limits of knowledge,

and to exploit the economic opportunities created by its investment of time and energy.

In this way, technologies and processes developed by those scientists are more easily

carried through to application for non-military uses.

4.3.2 Major Considerations

Command and Control (C2) is the exercise of authority and direction by a properly

designated commander over assigned and attached forces in the accomplishment of a

mission. C2 functions are performed through an arrangement of personnel, equipment,

communications, facilities, and procedures employed by a commander in planning, di-

recting, coordinating, and controlling forces and operations in the accomplishment of a

mission. C2 tasks usually include weapon and sensor systems control, tactical picture,
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Figure 4.3: The OODA loop (Boyd, 1987).

compilation, situation interpretation and threat evaluation, weapon selection, engage-

ment monitoring and mission planning and evaluation. In fact, C2 tasks cover what is

called the OODA (Observe, Orient, Decide and Act) loop as depicted in Figure 4.3. This

theory, by Boyd (1987), essentially states that, in a confrontation, whoever is quicker

to react to changes will prevail. Boyd describes this readiness to react to changes as

“having a tight OODA loop”. Therefore, Boyd’s theory can be expressed as “whoever

has a tighter OODA loop, will prevail”. Thus, the C2 process necessitates a highly

dynamic flow of information. Decision-making involves a number of operators and so-

phisticated decision support systems with a concomitant requirement for developing a

common, shared representation of the situation. In this context, there are many generic

issues worth considering. Indeed, the development of a relevant C2 theory will have

significant impact upon the analysis and design of both military and civil C2 systems.

The major considerations are the following (Chaib-draa et al., 2001):

• C2 is a multiagent environment: A C2 system is a multiagent organization in

which the decision-makers are both human and artificial agents. The decision-

makers are often geographically scattered due to the operational environment

and the physical nature of sensors and resources. Cooperation, coordination and

communication between the decision-makers are thus critical in such a distributed

C2 architecture.

• C2 has a functional architecture: Another key element of the C2 process is its

functional decomposition. Indeed, the C2 process can be decomposed into a set

of generally accepted C2 functions that must be executed in a reasonable time

frame to ensure success.
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• C2 is a complex process: The complexity of most C2 problems rises from the multi-

tude, the heterogeneity and the interrelations of the resources involved. Generally,

no decider alone can deal with the inherent complexity of the global situation.

This leads to a decomposition of the decision process along distinct expertise di-

mensions. In light of these considerations, team training is essential in any C2

organisation to achieve superior coordination and to make the best utilisation of

common resources. Moreover, a military C2 system must take into account the

specific established command and decision hierarchy.

• C2 deals with large volumes of data under stringent time constraints: Perceptual

and cognitive processing is further complicated by the fact that the underlying in-

formation is derived by continuously integrating and merging data from a variety

of sources to build a coherent situational picture. Particular processing problems

arise from information with different accurateness and timeliness. The integrated

data is generally imperfect; it can be uncertain, incomplete, imprecise, inconsis-

tent and ambiguous, due to limited sensor coverage, report ambiguities, report

conflicts or inaccuracies in measured data (Waltz and Buede, 1986). It follows

that (i) operators may have to handle potentially large situation uncertainties

and, (ii) at any given moment, there may be several likely interpretations of the

tactical picture. This leads to processing large volumes of data under stringent

time constraints.

In the case of Above-Water Warfare (AWW), the list of functions of the C2 archi-

tecture is as follows:

1. Threat detection: Based on data from several sensors.

2. Target tracking : Usually based on data fusion.

3. Discrimination: Results in the resolution of true threats from decoys.

4. Identification: In this step, the threats are identified.

5. Battle planning : In this process, decisions are made on how to deal with the

identified threats.

6. Resource assignments : Resources are assigned to engage each threat.

7. Engagement control : The process by which decisions in the two preceding steps

are executed in real-time.

8. Damage assessment : This process evaluates the outcome of the engagement con-

trol.
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In our concern, we address how we develop a decision support system that focusses

specifically on some particular aspects of the C2, in order to reduce the complexity

of the domain. Our primary focus is on the battle planning, resources assignments

and engagement control processes. To this end, we consider the Situation and Threat

Assessment (STA), which consists of threat detection, target tracking, discrimination

and identification, as a black box. Therefore, the output of these steps is taken directly

as available data, since it is not in the scope of this thesis to work on the STA. The

damage assessment, which covers the evaluation of the damage to a ship, is not currently

in our research goals, since we only need to evaluate the damages in a simple fashion:

destroyed, damaged or intact. Not working on STA and damage assessment reduces

the large volume of data that needs to be processed, which helps reducing the system’s

complexity.

The Naval Environment

The complexity of military decision-making processes can be affected by a number

of different environment properties. Russell and Norvig (2003) suggest the following

classification of environment properties:

• Fully observable vs. partially observable: If an agent’s sensor gives an access to the

complete state of the environment at each point in time, then we say that the task

environment is fully observable. A task environment is effectively fully observable

if the sensors detect all aspects that are relevant to the choice of action; relevance,

in turn, depends on the performance measure. Fully observable environments are

convenient because the agent does not need maintain any internal state to keep

track of the world. An environment might be partially observable because of noisy

and inaccurate sensors or because parts of the state are simply missing from the

sensor data — for example, the sensors of a military platform may fail to detect

the characteristics of a threat properly.

• Deterministic vs. stochastic: If the next state of the environment is completely

determined by the current state and the action executed by the agent, then we

say the environment is deterministic; otherwise, it is stochastic. In principle,

an agent need not worry about uncertainty in a fully observable, deterministic

environment. If the environment is partially observable, however, then it could

appear to be perceived as stochastic. This is particularly true if the environment

is complex, making it hard to keep track of all the unobserved aspects. Thus, it

is often better to think of an environment as deterministic or stochastic from the

point of view of the agent. A resource allocation system for a ship is stochastic

since it cannot predict exactly what is the evolution of the environment according

to the present state (for example: new threats emerging, threats trajectories
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changing, own resource effects etc.).

• Episodic vs. sequential : In an episodic task environment, the agent’s experience

is divided into atomic episodes. Each episode consists of the agent perceiving and

then performing a single action. Crucially, the next episode does not depend on

the actions taken in previous episodes. In episodic environments, the choice of

actions in each episode depends only on the episode itself. Many classification

tasks are episodic. For example, an agent that has to spot defective parts on

an assembly line, bases each decision on the current part, regardless of previous

decision; moreover, the decision does not affect whether the next part is defective

or not. In sequential environments, on the other hand, the current decision could

affect all future decisions. Resource allocation for a ship is sequential in the sense

that committing a given resource against a threat can have an impact on the

availability of that resource for subsequent engagements. Episodic environments

are much simpler than sequential environments because the agent does not need

to think ahead.

• Static vs. dynamic: If the environment can change while an agent is deliberating,

then we say the environment is dynamic; otherwise, it is static. Static environ-

ments are easy to deal with because the agent does not need to worry about time.

Dynamic environments, on the other hand, require continuous action from the

agent. In this context, no action is interpreted as the action of doing no thing. If

the environment itself does not change with the passage of time but the agent’s

performance score does, then we say the environment is semidynamic. Resource

allocation for a ship is dynamic because, the threats keep moving, changing di-

rections, appearing, disappearing, etc. while the agent is planning.

• Discrete vs. continuous : The discrete/continuous distinction can be applied to

the state of the environment, to the way time is handled, and to the percepts

and actions of the agent. For example, a discrete-state environment such as a

chess game has a finite number of distinct states. Chess also has a discrete set

of percepts and actions. A ship environment can also being modeled discretely

since the behavior of all threats and of a ship itself sweep into a finite number of

distinct states.

• Single agent vs. multiagent : The distinction between single-agent and multiagent

environments may seem simple enough. For example, an agent solving a crossword

puzzle by itself is clearly in a single-agent environment, whereas an agent playing

chess is in a two-agent environment. There are, however some subtle issues;

we have to explain which entities must be viewed as agents. Does an agent A

(a bus driver for example) have to treat an object B (another vehicle) as an

agent, or can it be treated merely as a stochastically behaving object, analogous
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to waves at the beach or leaves blowing in the wind? The key distinction is

whether B’s behavior is best described as maximizing a performance measure

whose value depends on agent A’s behavior. For example, in chess, the opponent

entity B is trying to maximize its performance measure, which, by the rules of

chess, minimizes agent A’s performance measure. Thus, chess is a competitive

multiagent environment. In the bus-driving environment, on the other hand,

avoiding collisions maximizes the performance measure of all agents, so it is a

partially cooperative multiagent environment. It is also partially because, for

example, only one bus can occupy a bus stop. The agent-design problems arising

in multiagent environments are often quite different from those in single-agent

environment; for example, communication often emerges as a rational behavior in

multiagent environments; in some partially observable competitive environments,

we must use a stochastic behavior because it avoids the pitfalls of predictability.

Resource allocation for a ship can be viewed as a competitive and cooperative

multiagent environment. Indeed, a ship agent is in competition with 0 to n

threats attacking it. Also, it can cooperate with 0 to k other ships to counter

some threats.

As demonstrated, the naval above-water warfare resource management problem for

a ship falls into the partially observable, stochastic, sequential, dynamic, discrete, and

multiagent case.

The next section introduces the specific problematic of above-water warfare we are

interested into. This problematic features the three parts of the decision process de-

scribed afterwards: Weapon-target allocation, resource coordination, and movement.

Target Problem

The resource management (weapons, navigation etc.) of a ship constitutes a real-

time planning problem with very constraining temporal requirements. During the last

years, RDDC-Valcartier undertook various research activities having as objectives the

maximization of defensive capacities of a ship by optimizing the management and the

deployment of its various resources. These resources were, however, considered sepa-

rately. For example, the problems of resources allocation of a ship were always treated

without taking movements of such ship into account, and vice versa. In this section,

we consider an integrated approach, whose central element is the positioning and the

operations of the ship. We now introduce different attacking phases for a threat which

are related to different defence strategies. A threat attacking a ship has four phases.

These four different phases, represented in Figure 4.4, correspond to different planning

tactics for a ship : (1) platform search; (2) tracking by platform; (3) missile search; and

(4) the locked phase. We now detail these different phases.
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Figure 4.4: The four different attacking phases for a threat.
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Platform search This area is where the enemy’s platform (ship, plane, etc.) is

searching for the ownship. Figure 4.5 describes such phase, where the radar of the

enemy’s platform is searching for the ownship. This radar has a beam circling around

the enemy’s platform with a certain range and speed. The ownship uses an Electronic

Support Measures (ESM) radar to detect if an enemy’s platform is searching. The

ESM radar has a greater range than the enemy’s radar since the energy it perceives has

only traveled in one way. Indeed, the energy has to perform twice the distance to go

back to the original platform. Therefore, the ship knows an enemy’s is tracking to find

another platform before the enemy may recognize its presence. Here, if the ownship has

detected the enemy’s platform, it can reduce its Radar Cross Section (RCS) to become

more difficultly detectable. Then, the ship has to move away from the enemy’s platform.

Finally, the ownship has to consider the blind zones of the hardkill and softkill weapons

while doing its manoeuvre.

Enemy’s platform Ownship

Electronic Support

Measures (ESM) radar

Enemy’s radar

range
radar

range
ESM 

> range
radar

speed
radar

beam
radar

Figure 4.5: The platform search phase.

Tracking by Platform Before describing the tracking by platform phase, we

introduce a jamming technique called range-gate pull off, as described in Figure 4.6. In

short, the target uses a jamming to transmit the appropriate electromagnetic energy
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back to the enemy’s tracking Fire Control Radar (FCR) by increasing gradually the

time t the energy is transmitted. The enemy is, therefore, becoming increasingly de-

sensitised to the real received energy, the enemy believes the ownship is moving away

while it is not. Once this process has continued for a short period of time, the threat

lost its fix on the ownship for another position.

t

t
t

t

No Jamming Jamming

Enemy's platform radar
FCR 

= 2t Enemy's platform radar
FCR

 = 2t + delay

OwnshipOwnship

Delay

Figure 4.6: The range-gate pull off technique.

The tracking by platform & launch phase is described in Figure 4.7. This area

reflects the zone where the FCR radar of the enemy’s platform has located the ownship.

The ownship knows it is being tracked because unlike in the tracking by platform phase

where it received separate energy pulse, it receives a constant energy emission. To

counter the enemy, the ownship can use the range-gate pull off technique. Then, it

throws a chaff at the position the jamming deceived the enemy. Also, it has to consider

the wind and other threats when throwing the chaff. Indeed, the ownship has to make

it effective for the other incoming threats, too. Also, the wind has to help the ownship

placing the chaff at its appropriate position. For example, it cannot throw a chaff with

the wind in its front, because the chaff may return to the ownship. Then, it moves

away from the gate of the FCR radar with a low RCS, and with a consideration of its

blind zones incurred to other threats.

Searching & Lock On The enemy’s platform has thrown an Anti Ship Missile

(ASM) into the ownship direction. Firstly, the threat is ballistic as it is travelling in

a straight line and its radar is not open, yet. The ASM knows its estimated distance

from the ownship with the data transmitted by the FCR radar of the platform. At

the time the distance from the ownship to the missile is the same, the missile opens

its seeker at a random time. When the seeker is opened, it searches the ownship in a

certain plan (see Figure 4.8). The ownship knows the threat is in this phase because

the energy from the seeker is moving. To deceive the threat, the ship can diminish its
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Figure 4.7: The tracking by platform phase.
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RCS, considering its blind zones. Then, it has to throw a chaff to create an alternative

target for the threat. In addition, it also has to consider other threats and the wind

when it throws the chaff.

Beam
Seaker

Detection plan

Figure 4.8: The searching & lock on phase.

Locked This phase is very similar to the tracking by platform one. The FCR of the

threat has tracked the ownship. To counter the enemy, the ownship can use the range-

gate pull off technique. Then, it throws a chaff at the position the jamming deceived

the enemy. Furthermore, the ownship has to consider the wind and other threats when

throwing the chaff. Indeed, it has to make it effective for the other incoming threats,

too. Also, the wind has to help placing the chaff at its appropriate position. Then,

the ship moves away from the gate of the FCR radar with a low RCS, and with a

consideration of its blind zones incurred to other threats. Here, it has less time to quit

the gate than in the tracking by platform phase because the threats travel at a higher

speed. However, the gate produced by the radar of the threat is less than the one of

the platform; as a consequence, the distance of the movement is less important.

All these phases have some coordination to be made when we are in a task group.

For example, we don’t want to throw a chaff near another ship and making the threat

lock on it. This problem is very complicated since we have many planning, coordination,

and prediction issues in it.

Resource allocation for naval engagements has three planning problems to solve

to generate a plan: (1) Weapon-Target Assignment (WTA), (2) resource coordination,

(3) movement. Indeed, a ship has firstly to assign weapons to some target. Secondly,

these weapons should be coordinated altogether to avoid negative interactions and to

profit from the positives ones. Finally, the movement of the ship should be considered.

The next section introduces Weapon-Target Assignment which is a general model for

resource allocation in military environments.
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4.4 Weapon-Target Assignment

The Weapon-Target Assignment (WTA) problem is a fundamental problem arising

in defense related applications of operations research (Ahuja et al., 2003). The problem

consists of optimally assigning weapons to the enemy-targets so that the total expected

survival value of the targets after all the engagements is minimized. There are two

versions of the WTA problem: static (i.e. episodic) and dynamic (i.e. sequential). In

the static version, all the inputs to the problem are fixed; that is, all targets are known,

all weapons are known, and all weapons engage targets in a single stage. The dynamic

version of the problem is a multi-stage problem where some weapons are engaged at

the targets at a stage, the outcome of this engagement is assessed and strategy for the

next stage is decided. This is called a “shoot-look-shoot-...” strategy since the defense

is alternating between shooting its weapons and observing (looking) at the outcomes.

Efficient solutions of the WTA problem are of great interest to the military. The rea-

son for this is that, in an engagement with the enemy, the problem must be solved in real-

time. The enormous combinatorial complexity of the problem implies that, even with

the supercomputers available today, optimal solutions cannot be obtained in real-time.

One must therefore develop good heuristics for solving the problem (Hosein and Athans,

1990). To provide good heuristics one must have a thorough understanding of the prop-

erties of the problem and its solution. Some important properties of the dynamic WTA

problem are:

• The computation time of any optimal algorithm for it grows exponentially with

its size (NP-Completeness).

• It is sequential (the results of previous engagements are observed before making

present assignments).

• It is nonlinear (the objective function is convex).

• It is stochastic (weapon-target engagements are modeled as stochastic events).

• It is large-scale (the number of weapons and targets is large, making enumeration

techniques impractical)

Unfortunately, these properties of the problem rule out any hope of obtaining efficient

optimal algorithms. Research on the WTA problem dates back to the 1950s and 1960s

where the modeling issues for WTA problem were investigated (Manne (1958); Braford

(1961); Day (1966)). Lloyd and Witsenhausen (1986) established the NP-completeness

of the WTA problem. Exact algorithms have been proposed to solve the WTA problem

for the following special cases: (i) when all the weapons are identical (DenBroader et al.

(1958); Katter (1986)) or (ii) when the targets can receive at most one weapon
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(Chang et al. (1987); Orlin (1987)). Some of the heuristics proposed to solve the

WTA problem are based on nonlinear network flow (Castanon, 1987), neural networks

(Wacholder, 1989), and genetic algorithms (Grant, 1993). Green et al. (1997) applied

a goal programming-based approach to the WTA problem. Metler and Preston (1990)

have studied a suite of algorithms for solving the WTA problem efficiently, which is

critical for real-time applications of the WTA problem. Maltin (1970), Eckler and Burr

(1972) and Murphey (1999) provide comprehensive reviews of the literature on the

WTA problem. Research to date on the WTA. An approach either solves the WTA

problem for special cases or develops heuristics for the WTA problem. Moreover, since

no exact algorithm is available to solve the weapon target assignment problems, it is

not known how accurate are the solutions obtained by these heuristic algorithms.

Ahuja et al. (2003) gave a mathematical formulation of the WTA problem. Let

there be n targets, numbered 1, 2, ..., n and m weapon types, numbered 1, 2, ..., m. Let

Vj denote the value of the target j, and Wi denote the number of weapons of type i

available to be assigned to targets. Let pij denote the probability of destroying target

j by a single weapon of type i. Hence qij = 1 − pij denote the probability of survival

of target j if a single weapon of type i is assigned to it. Observe that if we assign xij

number of weapons of type i to target j, then the survival probability of target j is given

by q
xij

ij . A target may be assigned weapons of different types. The WTA problem is to

determine the number of weapons xij of type i to be assigned to target j to minimize

the total expected survival value of all targets. This problem can be formulated as the

following nonlinear integer programming problem:

Minimise
n
∑

j=1

Vj ×

(

m
∏

i=1

q
xij

ij

)

(4.1)

subject to
n
∑

j=1

xij 6 Wi, for all i = 1, 2, ..., m,

xij > 0 and is an integer, for all i = 1, 2, ..., m, and for all j = 1, 2, ..., n.

In the above formulation, the expected survival value of the targets is minimized

while ensuring that the total number of weapons used is no more than those available.

This formulation presents a simplified version of the WTA problem. In more practical

versions, adding additional constraints may be considered, such as (i) lower and/or

upper bounds on the number of weapons of type i assigned to a target j; (ii) lower

and/or upper bounds on the total number of weapons assigned to target j; or (iii) a

lower bound on the survival value of the target j. Notice that Equation 4.1 could be

extended to consider positive and negative interactions between resources in the own

platform if we are addressing WTA in the context of survival (Liang, 1995).

Ahuja et al. (2003) proposed several exact and heuristic algorithms to solve the

WTA problem. Their branch and bound algorithms are the first implicit enumeration
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algorithms that can solve moderately size instances of the WTA problem optimally.

They also proposed a heuristic algorithm which improves iteratively an initial greedy

solution and does not guarantee to obtain an optimal solution. This approach is similar

to the tabu search algorithm used previously in our research (Plamondon (2003); Soucy

(2003)).

4.4.1 Resource Allocation in a Platform

A ship contains two types of weapons. The hardkill weapons are used to counter-attack

an Anti-Ship Missile (ASM) that comes toward the own platform. Their solution is

to destroy the ASM in the air. There are three types of hardkill weapons : a long

range Surface-to-Air Missile (SAM), a middle range gun, and a short range Close-In

Weapons System (CIWS). The SAM and the gun are controlled by a Separate Tracking

and Illuminating Radar (STIR), and the CIWS is controlled by the CIWS radar. On

the other hand, the softkill weapons are used to confuse an ASM that comes toward

the own platform. Their aim is to make the ASM fall in the water. There are two

types of softkill weapons : The jamming and the chaff. The jamming aims to modify

the waves of the radar that controls the threat that comes toward the own platform.

The jamming tries to modify the destination of the ASM by controlling its own radar.

The chaff is a cloud formed beside the ownship to make the threat’s radar believes the

cloud is the real ship. For instance, Figure 4.9 represents the interactions between the

STIR and the chaff. A kill assessment operation follows each engagement to measure

its outcome (Plamondon (2003); Frini et al. (2004)). The outcome is assumed to be

binary, i.e., a total success or a total failure. Thus, after each engagement, threat can

be “killed” or “not killed”. The probability of the state “killed” is calculated by

PK = 1− PNK = 1−
∏

w∈W

(1− P w
K) (4.2)

The resources of the own platform can be modeled as a WTA problem. In particular,

the own platform has m weapon types: SAM, Gun, CIWS, Jamming and Chaff. Each

weapon of type i is constrained on the amount (Wi) that may be used to counter the

incoming n missile target types. For example, if the own platform possesses two STIRs,

we can use only two SAMs/Guns at a time. Also, each weapon of type i has a probability

pij to counter each target j. Furthermore, each target j has a value (Vj) characterized

by its range, azimuth and dangerousness. As we can see, all the required variables for

the WTA problem are present in the resource allocation of the own platform.
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4.5 Resource Coordination

It is necessary to coordinate effectively the weapons, sensors and manoeuvres for

a ship. Liang (1995) and Liang and Liem (1992) discuss the problematic created by

the different positive and negative interactions between the resources of a ship. These

interactions are separated into three types: positive, neutral and negative. For example,

when using a STIR, we emit energy that the threat can sense, thus making the chaff

efficiency much lower. Indeed, using a conjunction of a STIR and a chaff in the same

area forms a negative interaction. It is necessary to manage very well such resources

to make positive interactions effective and avoid negative interactions. Elsewhere, we

investigated many coordination strategies to manage efficiently these interactions. The

results suggested that a central coordinator technique provides a coordinated plan in a

minimal time (Plamondon, 2003).

Legend

None

STIR only

Chaff only

Both

Figure 4.9: Interactions between the STIR and the chaff in a ship (from Liang (1995)).

Furthermore, Visser (2001) indicated that current anti-ship missile defence is lim-

ited to preplanned actions, voice commands during engagement, and relatively simple

computer-based advice (if all present). However, none of these command procedures

is considered to be fast and accurate enough once a multiple anti-ship attack has be-

gun. Visser has participated in a research program in order to develop a technology

demonstrator in which rules for coordinated hardkill and softkill weapon deployment

could be evaluated. The demonstrator of such researches consisted of a hardkill sched-

uler, a softkill scheduler, a hardkill/softkill coordinator and a simulation environment

to test and evaluate these subsystems. The rules concerning the coordination between

the hardkill and softkill weapon systems have been incorporated in a third module

(the hardkill/softkill coordinator). The softkill deployment rules were optimized in the
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sense that negative interactions between different softkill measures are avoided and that

positive synergy between different softkill measures is achieved as much as possible. A

scheduler has also been considered in order to take into account the effects on other

engaged threats, the availability of softkill assets, the wind and the geometry of a ship.

In the meanwhile, Oard et al. (1994) have considered the problem of integrated and

coordinated employment of cruise missile defenses and Chaffs on a single ship. A mathe-

matical model of their performance has been developed. An optimal scheduling problem

was posed using this model, and a dynamic programming solution was developed. Be-

cause value iteration dynamic programming required working backward at time, they

considered every state combination of state variables at every time. Although they are

able to find optimal solutions small problems using dynamic programming, they claimed

that solving problems based on larger models requires more computer resources than

can practically be provided. For this reason, they were motivated to search for faster

techniques. Both heuristic techniques and alternatives uses of the dynamic program-

ming equations bear further investigations. They also stated that the value iteration

dynamic programming solution they have developed is useful, however, since it can be

used to gain insight into the design of such algorithms and to evaluate the performance

or those algorithms in a restricted domain.

Brown et al. (2001) are, on the other hand, investigating innovative real-time deci-

sion support concepts to aid the commander to coordinate many platforms together.

Precisely, their research scope have addressed the following areas:

• display of battle information to the commander that can be easily assimilated,

reasoned and actioned upon;

• rapid evaluation of threats at the force level;

• generating and analyzing complex force response options involving combinations

of both hard and soft kill weapons (hardkill/softkill);

• providing the command with a set of prioritised response options (recommenda-

tions);

• continuous engagement monitoring, assessment and re-allocation across the force;

• fully automatic capability for complex and/or time critical situations;

• distributed implementation for improved speed and robustness;

• real-time implementation;

• hardkill/softkill co-ordination techniques;
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• information exchange requirements.

The next section describe a brief literature review on own platform movement.

4.6 Movement

Very few researchers have addressed the ship manoeuvre. Except, Hong et al. (2003)

who proposed a collision avoidance ship manoeuvre method. Ghose (2003), for his part,

proposed a missile engagement navigation system. Both these works are not related

on the specific problem we are working on: Minimizing our blind zones and minimiz-

ing our surface exposed to incoming threats. The only deep work on these problems

were performed by Plamondon (2003), Morissette et al. (2004) and Plamondon et al.

(2003). To this end, a first positioning strategy by Plamondon (2003) separates the

environment in different sectors of effectiveness for the own platform. Then, a position

is made to maximize the effectiveness for the own platform to counter the incoming

threats by changing the respective sector of the threats using a näıve Bayes classifier

heuristic. Another method from Morissette et al. (2004), which also uses the sector of

effectiveness, has been using an heuristic which evaluates the effectiveness of a posi-

tion according to the threats found in the environment. Then, an algorithm treats all

the possible rotations and suggests the best regarding a given situation. In this con-

text, a first version of a Radar Cross Section (RCS) reduction movement was proposed

(Plamondon et al., 2003).

We now introduce a simple resource allocation problem and the problem instance

we used in this thesis, which retains all the characteristics of the problem described in

this chapter.

4.7 Domain of Experiment for the Thesis

The domain of the experiments in this thesis is as following. The domain is a naval

platform which must counter incoming missiles (i.e. tasks) by using its resources (i.e.

weapons, movements). For the experiments, 100 randomly resource allocation problems

were generated for each approach, and possible number of tasks.

In our problem, |Sta| = 4, thus each task can be in four distinct states. There are two

types of states; firstly, states where actions modify the transition probabilities; and then,

there are goal states. The state transitions are all stochastic because when a missile

is in a given state, it may always transit in many possible states. In particular, each

resource type has a probability to counter a missile between 45% and 65% depending

on the state of the task. When a missile is not countered, it transits to another state,
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which may be preferred or not to the current state, where the most preferred state for

a task is when it is countered. The effectiveness of each resource is modified randomly

by ±15% at the start of a scenario.

There are also local and global resource constraints on the amount that may be

used. For the local constraints, at most 1 resource of each type can be allocated to

execute tasks in a specific state. This constraint is also present on a real naval platform

because of sensor and launcher constraints and engagement policies. Furthermore, for

consumable resources, the total amount of available consumable resource is between

1 and 2 for each type. The global constraint is generated randomly at the start of a

scenario for each consumable resource type. Temporal constraints are not considered

in this problem for simplicity. Still, as explained in Section 6.1.2, |A| is combinatorial

with the number of resource types.

Chapter 7 tackles a much more complex problem, which takes into account all main

aspect of scheduling, including temporal constraints. To test some algorithms, some

modifications of these settings have been made and they are detailed.

4.7.1 Discussion

As explained in Section 4.3.2, the naval above-water warfare resource management

problem for a ship falls into the partially observable, stochastic, sequential, dynamic,

discrete, and multiagent case. Table 4.1 summarizes the main characteristics of the

artificial intelligence and operation research/decision sciences planning approaches.

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

h
h

hh

Approaches

Ship environment
Stochastic Observation Optimality

MDPs Yes Yes Yes

Classical planning No No No

Probabilistic planning Yes Yes No

Contingency planning Yes Yes No

Table 4.1: Identification of the planning approach for a ship.

An MDP approach permits to compare its solution (policy) to the optimal solution

and provides a convenient representation of the state space. An MDP representation is

very general and modeling the problem with WTA of design-to-time scheduling results

only in a specialization of the model.

However, one may claim, that POMDPs are more suitable, but the complexity of

this approach and the fact that a MDP is only a specialization of POMDPs keeps the

MDP framework valid. Indeed, once our problem is well solved using the MDP ap-

proach, extending it to a partially observable environment does not modify the validity
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of our work. In the previous section, we discussed that our motivated problem requires

resource coordination and movement. Using MDPs, the resource coordination prob-

lem can be solved by modifying the transition probabilities of using a resource on a

specific threat, if another conflicting resource is used simultaneously. Furthermore, the

movement is simply a possible action to execute by the MDP planner.

4.7.2 Resource Allocation as a MDPs

In our domain of experiment, presented in Section 4.7, the transition function and

the reward function are both known. A Markov Decision Process (MDP) framework

is used to model our stochastic resource allocation problem. MDPs have been widely

adopted by researchers today to model a stochastic process. This is due to the fact that

MDPs provide a well-studied and simple, yet very expressive model of the world. An

MDP in the context of a resource allocation problem with limited resources is defined

as a tuple 〈Res, Ta, S, A, P, W, R, 〉, where:

• res ∈ Res is a finite set of resource types available for a planning process. Each

resource type may have a local resource constraint Lres on the number that may

be used in a single step, and a global resource constraint Gres on the number

that may be used in total. The global constraint only applies for consumable

resource types (Resc) and the local constraints always apply to consumable and

non-consumable resource types.

• Ta is a finite set of tasks with ta ∈ Ta to be accomplished.

• S is a finite set of states with s ∈ S. A state s is a tuple 〈Ta, Resc〉, which is

the characteristic of each unaccomplished task ta ∈ Ta in the environment, and

the available consumable resources. sta is the specific state of task ta. Also, S

contains a non empty set sg ⊆ S of goal states. A goal state is a sink state where

an agent stays forever.

• A is a finite set of actions (or assignments). The actions a ∈ A(s) applicable

in a state are the combination of all resource assignments that may be executed,

according to the state s. In particular, a is simply an allocation of resources to the

current tasks, and ata is the resource allocation to task ta. The possible actions

are limited by Lres and Gres.

• Transition probabilities Pa(s
′|s) for s ∈ S and a ∈ A(s).

• W = [wta] is the relative weight (criticality) of each task.

• State rewards R = [rs] :
∑

ta∈Ta

rsta
← ℜsta

× wta. The relative reward of the state

of a task rsta
is the product of a real number ℜsta

by the weight factor wta. For
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our problem, a reward of 1 × wta is given when the state of a task (sta) is in an

achieved state, and 0 in all other cases.

• A discount (preference) factor γ, which is a real number between 0 and 1.

A solution of an MDP is a policy π mapping states s into actions a ∈ A(s).

In particular, πta(s) is the action (i.e. resources to allocate) that should be executed

on task ta, considering the global state s. In this case, an optimal policy is one that

maximizes the expected total reward for accomplishing all tasks. The optimal value of

a state, V (s), is given by Equation 3.2 where the remaining consumable resources in

state s′ are Resc \ res(a), where res(a) are the consumable resources used by action

a. Indeed, since an action a is a resource assignment, Resc \ res(a) is the new set of

available resources after the execution of action a. The policy is subjected to the local

resource constraints res(π(s)) 6 Lres∀ s ∈ S , and ∀ res ∈ Res. The global constraint

is defined according to all system trajectories tra ∈ TRA. A system trajectory tra is a

possible sequence of state-action pairs, until a goal state is reached under the optimal

policy π. For example, state s is entered, which may transit to s′ or to s′′, according to

action a. The two possible system trajectories are 〈(s, a), (s′)〉 and 〈(s, a), (s′′)〉. The

global resource constraint is res(tra) 6 Gres∀ tra ∈ TRA ,and ∀ res ∈ Resc where

res(tra) is a function which returns the resources used by trajectory tra. Since the

available consumable resources are represented in the state space, this condition is

verified by itself. In other words, the model is Markovian as the history has not to be

considered in the state space. Furthermore, the time is not considered in the model

description, but it may also include a time horizon by using a finite horizon MDP.

4.8 Conclusion

This chapter detailed the specific problematic and and the domain of experiment for

the thesis. Our problematic contains three main aspects: Weapon-target assignment,

resource coordination and ship movement. We have chosen to model this resource

allocation problem with Markov Decision Processes (MDPs) because it is very suitable.

The next chapter introduces heuristic search which is used in Sections 5.2, 6.1 and

Chapter 7 to prune the state and action spaces of a resource allocation problem.



Chapter 5

Heuristic Search Approaches

5.1 Overview

A common way of addressing the large stochastic problem of resource allocation

is by using Markov Decision Processes (MDPs), and in particular real-time search

where many algorithms have been developed recently. For instance Real-Time Dynamic

Programming (RTDP) (Barto et al., 1995), LRTDP (Bonet and Geffner, 2003b), HDP

(Bonet and Geffner, 2003a), and LAO⋆ (Hansen and Feng, 2001) are all state-of-the-art

heuristic search approaches in a stochastic environment.

An interesting approach, by its anytime quality, is RTDP introduced by Barto et al.

(1995) which updates states in trajectories from an initial state s0 to a goal state sg.

RTDP is much more effective if the generated trajectories are efficient. To achieve

this, Bounded RTDP (BRTDP) (McMahan et al., 2005), Focused RTDP (FRTDP)

(Smith and Simmons, 2006), and modified value iteration (Singh and Cohn, 1998) are

approaches for solving a stochastic problem using a RTDP type heuristic search with

upper and lower bounds on the value of states.

An optimal policy can be found using an off-line dynamic programming algorithm

such as policy iteration or value iteration. But a disadvantage of dynamic programming

is that it evaluates the entire state space. In effect, it finds a policy for every possible

starting state. By contrast, heuristic search algorithms solve a problem for a particular

starting state and use an admissible heuristic to focus the search, and remove from

consideration regions of the state space that cannot be reached from the start state

by an optimal solution. For problems with large state spaces, heuristic search has an

advantage over dynamic programming because it can find an optimal solution for a

start state without evaluating the entire state space.

This advantage is well-known for problems that can be solved by A∗ (P. Hart, 1968).

In fact, an important theorem about the behavior of A∗ is that (under certain condi-
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tions) it evaluates the minimal number of states among all algorithms that find an

optimal solution (Dechter and Pearl, 1985). The A∗ algorithm lies the foundation of all

heuristic search algorithm presented in this chapter.

5.1.1 RTDP

RTDP (Barto et al., 1995) has emerged from Learning Real-Time A∗ (LRTA∗) (Korf,

1990), which in turn, has emerged from A∗ (P. Hart, 1968). We should note that A∗

relies on a heuristic function h(s) that estimates the cost from state s to the goal. Not

learning the h(s) function in this algorithm may cause two problems: it may return

non-optimal solutions, or it may loop and return no solution at all. Korf showed that

updating the utilities each time a state is visited can solve both these problems. Indeed,

LRTA∗ guarantees that the search will not be trapped into a loop as long as there is

a path from every state to the goal. Second, Korf proved that successive trials of the

algorithm, each beginning with the value function resulting from the previous trial,

eventually deliver an optimal path to the goal. This is provided that the heuristic

h used to initialize the value function V is admissible1. The rate at which LRTA∗

converges to the optimal solution depends on the size of the state space and the quality

of the heuristic function h(s). A better heuristic yields a more focussed search, a high

ratio of updates on the relevant states, and a faster convergence.

Algorithm 5.1 The RTDP algorithm (Barto et al., 1995).

1: Function RTDP(S)

2: returns a value function V

3: repeat

4: s← s0

5: repeat

6: V (s)← R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′)

{where V (s′) = h(s′) when s′ is not yet visited, and s′ has Resc \ res(a) re-

maining consumable resources}

7: Resc ← s.Resc \ res(π(s))

8: s← s.PICK-NEXT-STATE(Resc)

9: until s is a goal

10: until No more computing time is allowed

11: return V

RTDP (Barto et al., 1995) (Algorithm 5.1) is a probabilistic version of LRTA∗ and

1When we want to minimize the cost, an admissible heuristic is one that affects a greater (lesser

when we maximize the expected reward) value for all state than the “real” one. This way, all relevant

states are assured of being explored.
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has the same properties. A good advantage of RTDP, just like all MDP algorithms, is

that it is an anytime algorithm. This algorithm can also be viewed as a greedy ver-

sion of the dynamic programming algorithms for solving MDPs. Each RTDP trial, or

trajectories (Line 6 to 11 of the Algorithm 5.1), is the result of simulating the policy

π, through the PICK-NEXT-STATE(Resc) function, while updating the values V (s)

using a Bellman backup (Equation 3.2) over the states s that are visited. h(s′) is a

heuristic which defines an initial value for state s′. This heuristic has to be admissible

— The value given by the heuristic has to overestimate (or underestimate) the optimal

value when the objective function is maximized (or minimized). For example, an admis-

sible heuristic for a stochastic shortest path problem is the solution of a deterministic

shortest path problem. Indeed, since the problem is stochastic, the optimal value is

lower than this one given by the deterministic version. Furthermore, RTDP interleaves

planning and execution, and in this sense it is an on-line algorithm. Unfortunately,

the backups are made infinitely often in the limit for RTDP, and we can never know

when the algorithm has converged. For this reason, the algorithm stops to perform

trajectories when a time deadline is reached (Line 10 of Algorithm 5.1.

5.1.2 LRTDP

Bonet and Geffner (2003b) proposed LRTDP (Algorithm 5.2) as an improvement to

RTDP (Barto et al., 1995). LRTDP is a simple dynamic programming algorithm that

involves, like RTDP, a sequence of trial runs. Each trajectories starts in the initial state

s0 and ends in a goal, i.e. a solved state in this approach.

It has been proven that LRTDP, given an admissible initial heuristic on the value

of states cannot be trapped in loops, and eventually yields optimal values. The conver-

gence is accomplished by means of a labeling procedure called CHECK-SOLVED(s)

in Line 14 of the LRTDP function. The CHECK-SOLVED function is presented in Al-

gorithm 5.3. This procedure tries to label as solved each traversed state in the current

trajectory. A state s is labeled as solved iff s.solved = true. When the initial state is

labelled as solved, the algorithm has converged. Note that the depth first search stores

all states visited in a closed list (Line 11) to avoid loops and duplicate work. Thus the

time and space complexity of CHECK-SOLVED(s) is O(S) in the worst case, while

a tighter bound is given by O(SV (s)) where SV (s) ⊆ S refers to the states that are

reachable from a state s with the initial heuristic policy. This distinction is important

as the reachable states from s may be much smaller than the complete state space in

certain cases depending on the domain and the quality of the initial value (heuristic)

function.
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Algorithm 5.2 The LRTDP algorithm (Bonet and Geffner, 2003b).

1: Function LRTDP(S)

2: returns a value function V

3: repeat

4: s← s0

5: visited← null

6: repeat

7: visited.push(s)

8: V (s)← R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′)

{where V (s′) = h(s′) when s′ is not yet visited, and s′ has Resc \ res(a) re-

maining consumable resources}

9: Resc ← s.Resc \ res(π(s))

10: s← s.PICK-NEXT-STATE(Resc)

11: until s is a goal

12: while visited 6= null do

13: s← visited.pop()

14: if ¬ CHECK-SOLVED(s) then

15: break

16: end if

17: end while

18: until s0 is solved

19: return V

5.1.3 RTDP with Two Bounds

RTDP is much more effective if the generated trajectories are efficient. To achieve

this, Bounded RTDP (BRTDP) (McMahan et al., 2005), Focused RTDP (FRTDP)

(Smith and Simmons, 2006), and modified value iteration (Singh and Cohn, 1998) are

approaches for solving a stochastic problem using a RTDP type heuristic search with

upper and lower bounds on the value of states.

We can supply RTDP by two bounds through two distinct initial heuristics for

unvisited states s ∈ S: hL(s) and hU(s). On the one hand, hL(s) defines a lower bound

on the value of s such that the optimal value of s is higher than hL(s). On the other

hand, hU(s) defines an upper bound on the value of s such that the optimal value of

s is lower of equal than hU (s). Also, L(s) is the lower bound value of state s, while

U(s) is the upper bound value of state s. Similarly, QL(a, s) is the Q-value of the lower

bound of action a in state s, while QU(a, s) is the Q-value of the upper bound of action

a in state s.



CHAPTER 5. HEURISTIC SEARCH APPROACHES 71

Algorithm 5.3 The CHECK-SOLVED algorithm for LRTDP (Bonet and Geffner,

2003b).

1: Function CHECK-SOLVED(s)

2: returns a boolean rv

3: rv ← true

4: open←emptyStack

5: closed←emptyStack

6: if ¬s.solved then

7: open.PUSH(s)

8: end if

9: while open 6= emptyStack do

10: s← open.POP()

11: closed.PUSH(s)

{check residual}

12: if δ(s) > ǫ then

13: rv ← false

14: continue

15: end if

16: for all s′ such that Pπ(s)(s
′|s) > 0 do

17: if ¬s.solved ∧ ¬ IN(s′, open ∪ closed) then

18: open.PUSH(s)

19: end if

20: end for

21: end while

22: if rv = true then

23: {label relevant states}

24: for all s′ ∈ closed do

25: s′.solved = true

26: end for

27: else

28: while closed 6= emptyStack do

29: s← closed.POP()

30: V (s)← R(s) + max
a∈A(s)

γ
∑

s′∈S

Pa(s
′|s)V (s′)

31: end while

32: end if

33: return rv

Also, the CHECK-SOLVED(s, ǫ) procedure can be omitted from RTDP with two

bounds approaches because the bounds can provide the labeling of a state as solved.
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Computing these two bounds is made simultaneously as the state transitions are

the same for both bounds. Only the values of the state transitions change. Thus,

having to compute two Q-values instead of one does not augment the complexity of

the bounded approaches. In fact, Smith and Simmons (2006) state that the additional

time to compute a Bellman backup for two bounds, instead of one, is no more than

10%.

As discussed by Singh and Cohn (1998), RTDP with two bounds has a number of

desirable anytime characteristics: if an action has to be picked in state s before the

algorithm has converged (while multiple competitive actions remains), the action with

the highest lower bound is picked. Since the upper bound for state s is known, it may

be estimated how far the lower bound is from the optimal. If the difference between the

lower and upper bound is too high, one can use another greedy algorithm with a fast

and near optimal solution, if it is possible. The following sections present three types

of RTDP with two bounds type of algorithms: BRTDP, FRTDP, and modified value

iteration.

BRTDP

The pseudocode for Bounded RTDP (BRTDP) (McMahan et al., 2005) is given in Al-

gorithm 5.4. BRTDP has many differences from RTDP: The first is when a policy is

requested for BRTDP(before or after convergence), it is returned based on the lower

bound L. The second difference is that L helps guide exploration in simulation, as com-

puted in Lines 11 to 16 of the algorithm. In particular, when trajectories are sampled

in simulation, the outcome distribution is biased to prefer transitions to states with a

large gap (U(y)−L(y)). Furthermore, BRTDP maintains a list of states on the current

trajectory, and when the trajectory terminates, it does backups in reverse order along

the stored trajectory (Lines 18 to 22 of the BRTDP function). Finally, like LRTDP,

simulated trajectories terminate when they reach a state that has a “well-known” value,

rather than when they reach the goal. McMahan et al. (2005) proved the convergence

of BRTDP.

FRTDP

Focused RTDP (Algorithm 5.5) is also an RTDP based algorithm proposed by

Smith and Simmons (2006). As in RTDP, FRTDP’s execution consists in trials that

begin in a given initial state s0 and then explore reachable states of the state space,

selecting actions according to an upper bound. Once a final state is reached, it performs

Bellman updates on the way back to s0.

FRTDP uses a priority value for selecting actions outcomes and detecting trial
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Algorithm 5.4 The BRTDP algorithm (McMahan et al., 2005).

1: Function BRTDP(S)

2: returns a value function V

3: while U(s0)− L(s0) > ǫ do

4: x← s0

5: traj ← emptyStack

6: while true do

7: traj.PUSH(x)

8: U(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)U(x′)

{where U(x) ← hU(x) when x is not yet visited and x′ has Resc \ res(a)

remaining consumable resources}

9: a← arg max
a∈A(s)

QL(x, a)

10: L(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)L(x′)

{where L(x) ← hL(x) when x is not yet visited and x′ has Resc \ res(a) re-

maining consumable resources}

11: ∀y, b(y)← Pa(y|x)(U(y)− L(y))

12: B ←
∑

y∈S

b(y)

13: if B < (U(s)− L(s))/τ then

14: break

15: end if

16: x← sample from distribution b(y)/B

17: end while

18: while traj 6= null do

19: x← traj.POP()

20: U(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)U(x′)

21: L(x)← R(x) + γ
∑

x′∈S

Pa(x
′|x)L(x′)

22: end while

23: end while

24: return V

termination (Lines 7 to 9 of the BACKUP function). The lower bound is used to

establish the policy by contributing in the priority calculation of states to expand on

the fringe of the search tree. Furthermore, in this algorithm, trial termination detection

has been modified and improved from RTDP by adding an adaptive maximum depth

D in the search tree in order to avoid over-committing to long trials early on (Line 4

of the TRIAL function). In fact, the maximum depth D is updated by kD ×D in Line

7 of the FRTDP function each time the trial is not useful enough. This usefulness is
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represented by δW where δ measures how much the update changed the upper bound

value of s and W the expected amount of time the current policy spends in s, adding

up all possible paths from s0 to s.

Algorithm 5.5 The FRTDP algorithm (Smith and Simmons, 2006).

1: Function FRTDP(s0)

2: D ← D0

3: while U(s0)− L(s0) > ε do

4: (qp, np, qc, nc)← (0, 0, 0, 0)

5: TRIAL(s0,W = 1,d = 0)

6: if (qc/nc) > (qp/np) then

7: D ← kDD

8: end if

9: end while

1: Function INIT(s) {implicitly called

the first time each state s is touched}

2: (L(s), U(s))← (hL, hU)

3: s.prio← ∆(s)

1: Function TRIAL(s, W , d)

2: (a∗, s∗, δ)← BACKUP(s)

3: TRIAL-UPDATE(δW, d)

4: if ∆(s) 6 0 or d > D then

5: return

6: end if

7: TRIAL(s∗,γPa∗(s∗|s)W ,d + 1)

8: BACKUP(s)

1: Function TRIAL-UPDATE(q, d)

2: if d > D/kD then

3: (qc, nc)← (qc + q, nc + 1)

4: else

5: (qp, np)← (qp + q, np + 1)

6: end if

1: Function BACKUP(s)

2: L(s)← max
a∈A(s)

QL(a, s)

3: u← max
a∈A(s)

QU(a, s)

4: a∗ ← arg maxaQU(a, s)

5: δ ← |U(s)− u|

6: U(s)← u

7: p← max
s′∈S

γPa∗(s′|s)s′.prio

8: s∗ ← arg max
s′∈S

γPa∗(s′|s)s′.prio

9: s.prio← min(∆(s), p)

10: return (a∗, s∗, δ)

1: Function ∆(s)

2: return |U(s)− L(s)| − ε/2

1: Function QL(a, s)

2: return R(s) + γ
∑

s′∈S

γPa(s
′|s)L(s′)

{where L(s) ← hL(s) when s is not

yet visited and s′ has Resc \ res(a)

remaining consumable resources}

1: Function QU(a, s)

2: return R(s) + γ
∑

s′∈S

γPa(s
′|s)U(s′)

{where U(s) ← hU(s) when s is not

yet visited and s′ has Resc \ res(a)

remaining consumable resources}

Modified Value Iteration Algorithm

The modified value iteration algorithm proposed by Singh and Cohn (1998) is presented

in Algorithm 5.6. An interesting characteristic of this algorithm is to use the bounds for
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significantly reducing the action space A. Indeed, in Lines 5 and 6 of the BOUNDED-

BACKUP function, if QU(a, s) 6 L(s) then action a may be pruned from the action

space of s. Singh and Cohn (1998) proved that an algorithm that uses admissible lower

and upper bounds to prune the action space is assured of converging to an optimal

solution.

Algorithm 5.6 The modified value iteration algorithm (Singh and Cohn, 1998).

1: Function MODIFIED-VI(S)

2: returns a value function V

3: repeat

4: s← s0

5: visited← null

6: repeat

7: visited.push(s)

8: BOUNDED-BACKUP(s)

9: Resc ← s.Resc \ {π(s)}

10: s← s.PICK-NEXT-STATE(Resc)

{Select a possible transiting state s′ with the highest U(s′)− L(s′)}

11: until s is a goal

12: until |A(s)| = 1(or the Bellman error of s is bounded by ǫ) ∀ s ∈ S reachable from

the initial state s0

13: return V

Algorithm 5.7 The bounded Bellman backup for modified value iteration algorithm.

1: Function BOUNDED-BACKUP(s)

2: for all a ∈ A(s) do

3: QU(a, s)← R(s) + γ
∑

s′∈S

Pa(s
′|s)U(s′)

4: QL(a, s)← R(s) + γ
∑

s′∈S

Pa(s
′|s)L(s′)

{where L(s′) ← hL(s′) and U(s′) ← hU(s′) when s′ is not yet visited and s′ has

Resc \ res(a) remaining consumable resources}

5: if QU(a, s) 6 L(s) then

6: A(s)← A(s) \ a

7: end if

8: end for

9: L(s)← max
a∈A(s)

QL(a, s)

10: U(s)← max
a∈A(s)

QU(a, s)

11: π(s)← arg max
a∈A(s)

QL(a, s)
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Comparison of FRTDP, BRTDP and Modified Value Iteration

Both FRTDP and BRTDP propose an efficient trajectory of state updates to further

speed up the convergence, when given upper and lower bounds. BRTDP selects a state

s′ from a random distribution b(s′), such as:

∑

s′∈S

b(s′) = Pπ(L(s))(s
′|s)(U(s′)− L(s′))

. Similarly, FRTDP selects the next state according to a state priority p(s). p(s) =

U(s)− L(s) for fringe (not expanded) node, and

p(s) = min(U(s)− L(s), max
s′∈S

Pπ(U(s))(s
′|s)(p(s′))

for internal nodes. So, both BRTDP and FRTDP consider the difference between both

bounds as well as the probability of transiting to the next possible states, but in a

slightly different manner. Another difference is the length of the trajectories. On the

one hand, BRTDP stops the current trajectory when
∑

s′∈S b(s′) < (U(s) − L(s)/τ),

where τ is a constant > 1 (See Lines 13 and 14 of Algorithm 5.4). On the other hand,

FRTDP stops the current trajectory using an adaptive maximum depth termination.

The length D (see line 7 of the FRTDP function of Algorithm 5.5) of a trajectory is

slightly increased by a constant kD when the states near the end of the trajectory have

a greater Bellman error (difference of value of upper and lower bounds) than the other

states. Finally, both approaches make a backup in a backward fashion on all visited

state of a trajectory, when this trajectory has been made.

The main advantage that modified value iteration has over FRTDP and BRTDP is

the pruning of the action space when QU (a, s) < L(s). However, FRTDP and BRTDP

could be easily adapted to perform this sort of pruning.

Furthermore, for a resource allocation problem, if a new task dynamically arrives in

the environment, it can be accommodated by redefining the lower and upper bounds

which exist at the time of its arrival, as discussed by Singh and Cohn (1998).

5.1.4 AND/OR Graphs based techniques

While RTDP is an on-line real-time search algorithm and AND/OR Graphs (see

Appendix A for more detail) based techniques are an off-line search approach, both solve

the same class of MDPs and both converge to an optimal solution without evaluating

all problem states. Indeed, AO∗ and LAO∗, which both use AND/OR graphs, compute

a complete solution before setting foot in the real world. In contrast, RTDP interleaves

acting and planning by generating a new state by simulating an agent executing actions,

rather than by a pure computational process. We first describe the AO* Algorithm.
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AO*

Like other heuristic search algorithms, AO∗ (Martelli and Montanari (1978); Nilsson

(1980)) can find an optimal solution without considering every problem state. There-

fore, a graph is not usually supplied explicitly to the search algorithm. An implicit

graph, G, is specified implicitly by a start state and a successor function. The search

algorithm constructs an explicit graph, G′, that initially consists only of the start state.

A tip or leaf state of the explicit graph is said to be terminal if it is a goal state;

otherwise, it is said to be nonterminal. A nonterminal tip state can be expanded by

adding to the explicit graph its outgoing k-connectors (one for each outcome) and any

successor state(s) not already in the explicit graph.

AO∗ solves a state-space search problem by gradually building a solution graph,

beginning from the start state. A partial solution graph is defined similarly to a solu-

tion graph, with the difference that the tip states of a partial solution graph may be

nonterminal states of the implicit AND/OR graph. A partial solution graph is defined

as follows:

• The start state belongs to a partial solution graph.

• For every non tip state in a partial solution graph, exactly one outgoing k -

connector (corresponding to an action) is part of the partial solution graph and

each of its successor states also belongs to the partial solution graph.

• Every directed path in a partial solution graph terminates at a tip state of the

explicit graph.

Algorithm 5.8 outlines the AO∗ algorithm for finding a minimal cost solution graph

in an acyclic AND/OR graph. This algorithm interleaves forward expansion of the

best partial solution in Line 5 with a cost revision step that updates estimated state

costs and the best partial solution in Lines 6 to 10. We also note that the best partial

solution graph may have many nonterminal tip states. AO∗ works correctly no matter

which of these tip states is chosen for expansion. However, the efficiency of AO∗ can

be improved by using a good selection function to choose which nonterminal tip state

of the best partial solution graph to expand next. Possibilities include selecting the tip

state with the least estimated cost, or selecting the tip state with greatest probability of

being reached. Indeed, a best-first order for expanding an AND/OR graph is to expand

the state that is most likely to be part of an optimal solution is commonly used. This

means expanding a tip state of the best partial solution graph.

So, in order to expand the graph in best-first order, AO∗ must identify the best

partial solution graph in an explicit graph. To do so, AO∗ uses backwards induction to

propagate state costs from the leaves of the explicit graph to its root. In other words,
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Algorithm 5.8 The AO∗ algorithm for calculating utilities of states (Nilsson, 1980).

1: Function AO∗(S)

2: returns a value function

3: G′ ← s0

4: while G′ has some nonterminal tip states do

5: Expand G′ by choosing a nonterminal tip state such that V (s) = h(s) when s is

not a goal state; V (s) = 0 otherwise

6: Create Z which contains the expanded state and the ancestor states from which

can be reached by following the current best solution

7: repeat

8: Remove from Z a state s such that no descendent of s in G′ occurs in Z

9: V (s)← min
a∈A(s)

[C(a, s) + γ
∑

s′∈S

Pa(s
′|s)V (s′)] and mark the best action for s

{when determining the best action resolve ties arbitrarily, but give preference

to the currently marked action}

10: until Z is empty

11: end while

12: return G′ (which is optimal)

AO∗ uses dynamic programming in its cost revision step. In its forward expansion

step, it uses the start state and an admissible heuristic (optimistic values) h(s) to focus

computation on the part of the AND/OR graph where an optimal solution is likely

to be. In summary, AO∗ uses branch-and-bound in its forward expansion step and

dynamic programming in its cost revision step. Integrating these two techniques makes

it possible to find an optimal solution as efficiently as possible, without evaluating the

entire state space. AO∗ is an efficient off-line heuristic search algorithm for a stochastic

problem representable with an acyclic graph.

LAO*

We now describe LAO∗ (Hansen and Feng, 2001), a generalization of AO∗ that can

find solutions with loops (the “L” in the name LAO∗ stands for “loop”). LAO∗ is a

heuristic search algorithm that can find optimal solutions for MDPs without evaluating

the entire state space. Thus, it provides a useful alternative to dynamic programming

algorithms for MDPs such as value iteration and policy iteration. In fact, LAO∗ is the

first off-line heuristic search algorithm for MDPs.

The classic AO∗ algorithm can only solve problems that have acyclic solutions be-

cause the backwards induction algorithm used in its cost revision step assumes an acyclic

solution. The key step in generalizing AO∗ to create LAO∗ is to recognize that the cost



CHAPTER 5. HEURISTIC SEARCH APPROACHES 79

revision step of AO∗is a dynamic programming algorithm, and to generalize this step

appropriately. Instead of using backwards induction, state costs can be updated by

using a dynamic programming algorithm for MDPs, in Line 7 of the algorithm, such

as policy iteration or value iteration. This simple generalization sustains the algorithm

LAO∗ summarized in Algorithm 5.9.

Algorithm 5.9 The LAO∗ algorithm (Hansen and Feng, 2001).

1: Function LAO∗(S)

2: returns a value function

3: G′ ← s0

4: while G′ has some nonterminal tip state do

5: Expand G′ by choosing a nonterminal tip states such that V (s) = h(s) when s is

not a goal state; V (s) = 0 otherwise

6: Create Z which contains the expanded state and the ancestor states from which

can be reached by following the current best solution

7: Solve Z by performing policy iteration or value iteration

8: end while

9: if policy iteration was used then

10: return G′ {which is optimal}

11: else

12: repeat

13: Perform value iteration on G′

14: if the best current solution graph has an unexpanded tip state then

15: go to the while loop

16: end if

17: until the error bound falls below ǫ

18: return G′ {which is ǫ-optimal}

19: end if

As in AO∗, the cost revision step of LAO∗ is only performed on the set of states

that includes the expanded state and the states in the explicit graph from which the

expanded state can be reached by taking marked actions (i.e., by choosing the best

action for each state). The estimated cost of states that are not in this subset are

unaffected by any change in the cost of the expanded state or its ancestors. The cost

revision step of LAO∗ can be performed using either policy iteration or value iteration.

An advantage of using policy iteration is that it can compute an exact cost for each state

of the explicit graph after a finite number of iterations, based on the heuristic estimates

at the tip states. When value iteration is used, convergence to exact state costs is

asymptotic. However, this disadvantage is usually offset by the improved efficiency

of value iteration for larger problems. However, the results from Bonet and Geffner
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(2003b) suggest that trial-based LRTDP converge faster than LAO∗.

The next section proposes tight initial bounds for RTDP with two bounds.

5.2 Tight Bounds for RTDP With Two Bounds

5.2.1 Introduction

In Section 5.1.3, we introduced RTDP with two bounds, which is nowadays the state-

of-the-art in heuristic search planning in a stochastic environment. We now present

an improved version of bounded RTDP (Plamondon et al. (2007c); Plamondon et al.

(2007a)).

5.2.2 Bounded-RTDP

The Algorithm 5.10 presents a bounded version of RTDP (BOUNDED-RTDP) which

aims to prune the action space of sub-optimal actions. This pruning enables to speed up

the convergence and therefore to outperform LRTDP. BOUNDED-RTDP is similar to

RTDP except there are two distinct initial heuristics for unvisited states s ∈ S; hL(s)

and hU (s). Also, the CHECK-SOLVED(s) procedure can be omitted because the

bounds can provide the labeling of a state as solved. On the one hand, hL(s) defines a

lower bound on the value of s such that the optimal value of s is higher than hL(s). For

its part, hU(s) defines an upper bound on the value of s such that the optimal value of

s is lower than hU(s).

The values of the bounds are computed in Lines 3 and 4 of the BOUNDED-

BACKUP function. Computing these two Q-values is made simultaneously as the

state transitions are the same for both Q-values. Only the values of the state transi-

tions change. Thus, having to compute two Q-values instead of one does not augment

the complexity of the approach. In fact, Smith and Simmons (2006) state that the ad-

ditional time to compute a Bellman backup for two bounds, instead of one, is no more

than 10%, which is also what we obtained. In particular, L(s) is the lower bound of

state s, while U(s) is the upper bound of state s. Similarly, QL(a, s) is the Q-value

of the lower bound of action a in state s, while QU(a, s) is the Q-value of the upper

bound of action a in state s. Using these two bounds allow significantly reducing the

action space A. Indeed, in Lines 5 and 6 of the BOUNDED-BACKUP function, if

QU(a, s) 6 L(s) then action a may be pruned from the action space of s. In Line 13

of this function, a state can be labeled as solved if the difference between the lower

and upper bounds is lower than ǫ. When the execution goes back to the BOUNDED-

RTDP function, the next state in Line 10 has a fixed number of consumable resources
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available Resc, determined in Line 9. In brief, PICK-NEXT-STATE(Resc) selects a

none-solved state s reachable under the current policy which has the highest Bellman

error (|U(s)−L(s)|). Finally, in Lines 12 to 15, a backup is made in a backward fashion

on all visited state of a trajectory, when this trajectory has been made. This strategy

has been proven as efficient (Smith and Simmons (2006); McMahan et al. (2005)).

Algorithm 5.10 The BOUNDED-RTDP algorithm (Adapted from Bonet and Geffner

(2003b) and Singh and Cohn (1998)).

1: Function BOUNDED-RTDP(S)

2: returns a value function V

3: repeat

4: s← s0

5: visited← null

6: repeat

7: visited.push(s)

8: BOUNDED-BACKUP(s)

9: Resc ← s.Resc \ res(π(s))

10: s← s.PICK-NEXT-STATE(Resc)

{Selects a possible transiting state s′ with the highest U(s′)− L(s′)}

11: until s is a goal

12: while visited 6= null do

13: s← visited.pop()

14: BOUNDED-BACKUP(s)

15: end while

16: until s0 is solved or |A(s)| = 1 ∀ s ∈ S reachable from s0

17: return V

In fact, the previous algorithm 5.10 is similar to the modified value iteration pro-

posed by Singh and Cohn (1998), described in Algorithm 5.6. In addition to the mod-

ified value iteration, BOUNDED-RTDP proposes to label states as solved to speed-up

the convergence. Indeed, Singh and Cohn proposed that the algorithm terminates

when only one competitive action remains for each state, or when the range of all

competitive actions for any state are bounded by an indifference parameter ǫ. Our

BOUNDED-RTDP labels states for which |U(s)− L(s)| < ǫ as solved and the conver-

gence is reached when s0 is solved or when only one competitive action remains for

each state. This stopping criteria is more effective since it is similar to the one used

by Smith and Simmons (2006) and BRTDP by McMahan et al. (2005). Furthermore,

we perform updates in a backward fashion, as done by FRTDP and BRTDP, which are

proven being more effective. Thus, our BOUNDED-RTDP possesses the action prun-

ing property of the modified value iteration, as well as the effective convergence and



CHAPTER 5. HEURISTIC SEARCH APPROACHES 82

Algorithm 5.11 The bounded Bellman backup of the BOUNDED-RTDP algorithm.

1: Function BOUNDED-BACKUP(s)

2: for all a ∈ A(s) do

3: QU(a, s)← R(s) + γ
∑

s′∈S

Pa(s
′|s)U(s′)

4: QL(a, s)← R(s) + γ
∑

s′∈S

Pa(s
′|s)L(s′)

{where L(s′) ← hL(s′) and U(s′) ← hU(s′) when s′ is not yet visited and s′ has

Resc \ res(a) remaining consumable resources}

5: if QU(a, s) 6 L(s) then

6: A(s)← A(s) \ a

7: end if

8: end for

9: L(s)← max
a∈A(s)

QL(a, s)

10: U(s)← max
a∈A(s)

QU(a, s)

11: π(s)← arg max
a∈A(s)

QL(a, s)

12: if |U(s)− L(s)| < ǫ then

13: s← solved

14: end if

backward updates as done by FRTDP and BRTDP.

The next sections describe two separate methods to define hL(s) and hU(s). First of

all, the method of Singh and Cohn (1998) is briefly described. Then, our own method

(Plamondon et al. (2007c); Plamondon et al. (2007a)), which proposes tighter bounds

is described in detail.

5.2.3 Singh and Cohn’s Bounds

Singh and Cohn (1998) defined lower and upper bounds to prune the action space.

Their approach is pretty straightforward. First of all, a value function is computed for

all tasks to realize, using a standard RTDP approach. Then, using these task -value

functions, a lower bound hL, and upper bound hU can be defined. In particular,

hL(s) = max
ta∈Ta

Vta(sta), and hU(s) =
∑

ta∈Ta

Vta(sta)

. For readability, the upper bound by Singh and Cohn is named SinghU, and the

lower bound is named SinghL. The admissibility of these bounds has been proven by

Singh and Cohn, such that, the upper bound always overestimates the optimal value

of each state, while the lower bound always underestimates the optimal value of each
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state. In this chapter, the bounds defined by Singh and Cohn and implemented using

BOUNDED-RTDP define the SINGH-RTDP approach. The next sections propose to

tighten the bounds of SINGH-RTDP to permit a more effective pruning of the action

space.

5.2.4 Reducing the Upper Bound

SinghU includes actions which may not be possible to execute because of resource

constraints, which outputs too high values for the upper bound. To consider only pos-

sible actions, our upper bound (Plamondon et al., 2007a), named maxU is introduced:

hU(s) = max
a∈A(s)

∑

ta∈Ta

Qta(ata, sta) (5.1)

where Qta(ata, sta) is the Q-value of task ta for state sta, and action ata computed using

a standard LRTDP approach.

Theorem 5.2.1 The upper bound defined by Equation 5.1 is admissible.

Proof: The local resource constraints are satisfied because the upper bound is com-

puted using all global possible actions a. However, hU(s) still overestimates V ⋆(s)

because the global resource constraint is not enforced. Indeed, each task may use all

consumable resources for its own purpose. Doing this produces a higher value for each

task, than the one obtained when planning for all tasks globally with the shared limited

resources. �

Computing our maxU bound in a state has a complexity of O(|A| × |Ta|). A

standard Bellman backup has a complexity of O(|A|×|S|). Since |A|×|Ta| ≪ |A|×|S|,

the computation time to determine the upper bound of a state, which is done one time

for each visited state, is much less than the computation time required to compute a

standard Bellman backup for a state, which is usually done many times for each visited

state. Thus, the computation time of our upper bound is negligible.

5.2.5 Increasing the Lower Bound

Increasing SinghL can be done by allocating the resources a priori among the tasks

(Plamondon et al., 2007a). When each task has its own set of resources, each task may

be solved independently. The lower bound of state s is

hL(s) =
∑

ta∈Ta

Lowta(sta)

, where Lowta(sta) is a value function for each task ta ∈ Ta, such that the re-

sources have been allocated a priori. The allocation a priori of all the resources
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is made using marginal revenue, which is a highly used concept in microeconomics

(Pindyck and Rubinfeld, 2000), and has recently been used for coordination of a De-

centralized MDP (Beynier and Mouaddib, 2006). In brief, marginal revenue is the extra

revenue that an additional unit of product will bring to a firm. Thus, for a stochastic

resource allocation problem, the marginal revenue of a resource is the additional ex-

pected value it involves. The marginal revenue of a resource res; for a task ta in a state

sta is defined as following:

mrta(sta)← Vta(sta)− Vta(sta(Res \ res)) (5.2)

Figure 5.1 describes the processes involved in the computation of the lower bound.

In the beginning, the REVENUE-BOUND function is called (Algorithm 5.12) with

the set of tasks to execute and the set of available resources. Then, the ASSIGN-

RESOURCE function (Algorithm 5.13) assigns each resource type to a task using the

concept of marginal revenue. Finally, with the resource being shared, we compute the

value function of each task with its designated set of resource. A lower bound for a

state can then be obtained by summing the respective value functions.

ASSIGN-RESOURCE

heuristic, which uses 

marginal revenue

LRTDP on each task with

the shared resources

Figure 5.1: The lower bound computation process.

We now describe in more detail the Algorithm 5.12, which uses the concept of

marginal revenue of a resource to allocate the resources a priori among the tasks, which

enables to define the lower bound value of a state. In Line 4 of the algorithm, a

value function is computed for all tasks in the environment using a standard LRTDP

(Bonet and Geffner, 2003b) approach. These value functions, which are also used for the

upper bound, are computed considering that each task may use all available resources.

The Line 5 initializes the valueta variable. This variable is the estimated value of each
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Algorithm 5.12 The marginal revenue lower bound algorithm (Plamondon et al.,

2007a).

1: Function REVENUE-BOUND(s)

2: returns a lower bound LowTa

3: for all ta ∈ Ta do

4: Vta ←LRTDP(Sta) {Same value functions as used by the upper bound.}

5: valueta ← 0

6: end for

7: ResTa ←ASSIGN-RESOURCES(S, valueTa)

8: for all ta ∈ Ta do

9: Lowta ←LRTDP(Sta)

10: end for

11: return LowTa

task ta ∈ Ta. In the beginning of the algorithm, no resources are allocated to a specific

task, thus the valueta variable is initialized to 0 for all ta ∈ Ta.

Then, the execution shifts to the ASSIGN-RESOURCES function. In Line 5, a

resource type res (consumable or non-consumable) is selected to be allocated. Here,

a domain expert may separate all available resources in many types or parts to be

allocated. The resources are allocated in the order of its specialization. In other words,

the more a resource is efficient on a small group of tasks, the more it is allocated early.

Allocating the resources in this order improves the quality of the resulting lower bound.

The Line 8 computes the marginal revenue of a consumable resource res for each task

ta ∈ Ta. For a non-consumable resource, since the resource is not considered in the

state space, all other reachable states from sta consider that the resource res is still

usable.

The approach here is to sum the difference between the real value of a state to the

maximal Q-value of this state if resource res cannot be used for all states in a trajectory

given by the policy of task ta. This heuristic proved to obtain good results, but other

ones may be tried, for example Monte-Carlo simulation.

In Line 18, the marginal revenue is updated in function of the resources already

allocated to each task. R(sgta
) is the reward to realize task ta. Thus, Vta(sta)−valueta

R(sgta )
is

the residual expected value that remains to be achieved, knowing current allocation to

task ta, and normalized by the reward of realizing the tasks. The marginal revenue is

multiplied by this term to indicate that, the more a task has a high residual value, the

more its marginal revenue is going to be high.

Then, a task ta is selected in Line 20 with the highest marginal revenue, adjusted

with residual value. In Line 21, the resource type res is allocated to the group of
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Algorithm 5.13 The assign resource algorithm (Plamondon et al., 2007a).

1: Function ASSIGN-RESOURCES(S, valueTa)

2: returns a lower bound LowTa

3: s← s0

4: repeat

5: res← Select a resource type res ∈ Res

6: for all ta ∈ Ta do

7: if res is consumable then

8: mrta(sta)← Vta(sta)− Vta(sta(Res \ res))

9: else

10: mrta(sta)← 0

11: repeat

12: mrta(sta)← mrta(sta) + Vta(sta)− max
(ata∈A(sta)|res/∈ata)

Qta(ata, sta)

13: Rescta
← sta.Rescta

\ res(π(sta))

14: sta ← sta.PICK-NEXT-STATE(Rescta
)

15: until sta is a goal

16: s← s0

17: end if

18: mrrvta(sta)← mrta(sta)×
Vta(sta)−valueta

R(sgta )

19: end for

20: ta← Task ta ∈ Ta which maximize mrrvta(sta)

21: Resta ← Resta

⋃

{res}

22: temp← ∅

23: if res is consumable then

24: temp← res

25: end if

26: valueta ← valueta + ((Vta(sta)− valueta)×
max

ata∈A(sta,res)
Qta(ata,sta(temp))

Vta(sta)
)

27: until all resource types res ∈ Res are assigned

28: return LowTa

resources Resta of task ta. Afterwards, Line 26 recomputes valueta. The first part of

the equation to compute valueta represents the expected residual value for task ta. This

term is multiplied by
max

ata∈A(sta)
Qta(ata, sta(res))

Vta(sta)

, which is the ratio of the efficiency of resource type res. In other words, valueta is

assigned to valueta + (the residual value × the value ratio of resource type res). For a

consumable resource, the Q-value consider only resource res in the state space, while

for a non-consumable resource, no resources are available.
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All resource types are allocated in this manner until Res is empty. All consumable

and non-consumable resource types are allocated to each task. When all resources are

allocated, the lower bound components Lowta of each task are computed in Line 9 of

the REVENUE-BOUND function. When the global solution is computed, the lower

bound is as follow:

hL(s) = max(SinghL, max
a∈A(s)

∑

ta∈Ta

Lowta(sta)) (5.3)

We use the maximum of the SinghL bound and the sum of the lower bound components

Lowta, thus marginal-revenue > SinghL. In particular, the SinghL bound may be

higher when a little number of tasks remain. As the components Lowta are computed

considering s0; for example, if in a subsequent state only one task remains, the bound

of SinghL will be higher than any of the Lowta components.

The main difference of complexity between SinghL and REVENUE-BOUND is

in Line 9 where a value for each task has to be computed with the shared resources.

However, since the resources are shared, the state space and action space is greatly

reduced for each task, reducing greatly the calculus compared to the value functions

computed in Line 4 which is done for both SinghL and REVENUE-BOUND.

Theorem 5.2.2 The lower bound of Equation 5.3 is admissible.

Proof: Lowta(sta) is computed with the resources being shared. Summing the

Lowta(sta) value functions for each ta ∈ Ta does not violates the local and global

resource constraints. Indeed, as the resources are shared, the tasks cannot overuse

them. Thus, hL(s) is a realizable policy, and consequently an admissible lower bound.

�

5.2.6 Experiments and Discussion

For this problem a standard LRTDP approach has been implemented as described

in Section 6.1.3. Lets summarize these approaches here:

• LRTDP-UP: The upper bound of maxU is used for LRTDP.

• S-RTDP: The SinghL and SinghU bounds are used for BOUNDED-RTDP.

• M-RTDP: The REVENUE-BOUND and maxU bounds are used for

BOUNDED-RTDP.

The approaches described in this chapter are compared in Figure 5.2. To compute the

lower bound of REVENUE-BOUND, all available resources have to be separated in



CHAPTER 5. HEURISTIC SEARCH APPROACHES 88

 0.01

 0.1

 1

 10

 100

 1000

 10000

 1  2  3  4  5  6  7  8

T
im

e 
in

 s
ec

on
ds

Number of tasks

LRTDP
LRTDP-up

S-RTDP
M-RTDP

Figure 5.2: Efficiency of M-RTDP compared to S-RTDP (Plamondon et al., 2007a).

many types or parts to be allocated. For our problem, we allocated each resource of each

type in the order of of its specialization like we said when describing the REVENUE-

BOUND function.

In terms of experiments, notice that the LRTDP and LRTDP-UP approaches for

resource allocation, which do not prune the action space, are much more complex. For

instance, it took an average of 1512 seconds to plan for the LRTDP-UP approach with

six tasks (see Figure 5.3). The S-RTDP approach diminished the planning time by

using a lower and upper bound to prune the action space. M-RTDP further reduce the

planning time by providing very tight initial bounds. In particular, S-RTDP needed

231 seconds in average to solve problem with six tasks and MR-RTDP required 76

seconds. Indeed, the time reduction is quite significant compared to LRTDP-UP, which

demonstrates the efficiency of using bounds to prune the action space.

Furthermore, we implemented M-RTDP with the SinghU bound, and this was

slightly less efficient than with the maxU bound. We also implemented M-RTDP with

the SinghL bound, and this was slightly more efficient than S-RTDP. From these

results, we conclude that the difference of efficiency between M-RTDP and S-RTDP is

more attributable to the REVENUE-BOUND lower bound that to the maxU upper

bound. Indeed, when the number of tasks to execute is high, the lower bounds by

S-RTDP takes the values of a single task. On the other hand, the lower bound of

M-RTDP takes into account the value of all task by using a heuristic to distribute the

resources. Indeed, an optimal allocation is one where the resources are distributed in
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the best way to all tasks, and our lower bound heuristically does that. The next section

evaluates our bounds in the state of the art FRTDP and BRTDP algorithms.

Experiments and Discussion for FRTDP and BRTDP

Racetrack We evaluated the performance of FRTDP (Smith and Simmons, 2006)

and BRTDP (McMahan et al., 2005) on problems in the popular racetrack benchmark

domain from Barto et al. (1995). We perform these experiments because FRTDP and

BRTDP have never been previously compared on this problem. Foremost, we would

like to compare the behavior of these algorithms for the racetrack problem and for our

resource allocation problem described in the next section.

For the experiments we used the C++ code implemented by Smith and Simmons

(2006). We implemented BRTDP in their simulator, which is initialized with the same

(loose) initial lower and upper bounds that Smith and Simmons used. Table 5.1 reports

the convergence time within ǫ = 10−3 for each (problem, algorithm) pair, measured both

as number of backups and CPU time.

Singh and Cohn (1998) pruned the action space when QU (a, s) < L(s). We imple-

mented pruned versions of FRTDP and BRTDP with P-BRTDP and P-FRTDP. This

pruning can be implemented efficiently with a vector of boolean, which does not require

much memory, to determine if an action is dominated or not in a state. From the re-

sults, we observe that BRTDP is usually more efficient than FRTDP and the pruning

slightly improve the convergence time.

Our intuition is that BRTDP is faster than FRTDP because the maximum depth

termination is not well adapted for these problems, as it is the only main difference

for these algorithms. We also think that the little improvement with pruning is due to

the fact that the bounds are very loose and it requires many backup for the pruning to

start.

Resource Allocation We also tested BRTDP and FRTDP in the resource allo-

cation problem described in Section 4.7.

For this problem the FRTDP and BRTDP approaches have been implemented. For

FRTDP, the initial length D of a trajectory is 3 and the increasing ratio (kD) is 1.2. For

BRTDP the constant τ was set to 10. We tried different variations of settings and this

one provided a fast convergence. Also, as Singh and Cohn (1998) proposed, we pruned

the action space when QU(a, s) < L(s) for both FRTDP and BRTDP. Lets summarize

the implemented approaches here:

• LRTDP: The upper bound of maxU is used for LRTDP.
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Table 5.1: Millions of backups (CPU time) before convergence with ǫ = 10−3. The

fastest time for each problem is shown in bold. For BRTDP, τ = 10.

Algorithm large-b large-b-3 large-b-w

FRTDP 0.30(6.07) 0.49(7.14) 0.85(26.81)

BRTDP 0.24(5.24) 0.41(5.94) 0.74(24.74)

P-FRTDP 0.30(5.67) 0.50(6.95) 0.86(25.24)

P-BRTDP 0.24 (4.92) 0.41 (5.72) 0.74 (23.37)

Algorithm large-ring large-ring-3 large-ring-w

FRTDP 0.23(7.06) 0.37(7.46) 0.96(37.60)

BRTDP 0.20 (6.87) 0.37(7.58) 0.84(33.97)

P-FRTDP 0.23(6.62) 0.37(7.19) 0.98(34.65)

P-BRTDP 0.20 (6.47) 0.36(7.21) 0.80 (31.58)
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Figure 5.4: Computational efficiency of R-FRTDP, NPR-FRTDP and LRTDP.

Table 5.2: Planning time in seconds of FRTDP and BRTDP for our resource allocation

problem.

|Ta| 3 4 5 6 7 8

S-BRTDP 0.34 2.4 29 287 2373 -

S-FRTDP 0.3 2.1 23 202 1745 -

R-BRTDP 0.23 1.5 12.4 76 482 3987

R-FRTDP 0.21 1.4 11.2 69 450 3550

• S-BRTDP: The SinghL and SinghU bounds are used for BRTDP.

• S-FRTDP: The SinghL and SinghU bounds are used for FRTDP.

• R-BRTDP: The REVENUE-BOUND and maxU bounds are used for BRTDP.

• R-FRTDP: The REVENUE-BOUND and maxU bounds are used for FRTDP.

• NPR-FRTDP: R-FRTDP, but without action pruning.

To compute the lower bound of REVENUE-BOUND, all available resources have to

be separated in many types or parts to be allocated. For our problem, we allocated each

resource of each type in the order of of its specialization like we said when describing

the REVENUE-BOUND function.

In terms of experiments, we first compared the performance of FRTDP and BRTDP

on our resource allocation problem. In contrast with the racetrack problem, FRTDP

was faster than BRTDP with both the Singh and Cohn bounds and our proposed

bounds. Our intuition for this result is that the goal states in a resource allocation
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problem has not a high depth from s0. On the other hand, for a racetrack problem,

the car has to traverse many states to reach the goal. In this case, the complexity of a

resource allocation problem is more induced by the branching factor and the number of

actions in each state. Consequently, the little trajectories’s lengths of FRTDP enables

to not get “lost” in the huge state space as BRTDP does. Also, the initial state receives

efficient updates for FRTDP even if the trajectories’s lengths are small since the goal

states are usually reached, which is not the case for the racetrack problem.

Also, as one can notice in Table 5.2, and in Figures 5.3 and 5.4, the efficient trajec-

tories of the two bounded approaches coupled with tight bounds reduce the planning

time significantly. Indeed, the LRTDP approach for resource allocation, which does

not prune the action space, is much more complex. For instance, it took an average of

1512 seconds to plan for the LRTDP approach with six tasks. The S-FRTDP approach

diminishes the planning time by using a lower and upper bound to prune the action

space and with the efficient trajectories. R-FRTDP further reduces the planning time

by providing very tight initial bounds. In particular, S-FRTDP needed 202 seconds in

average to solve problem with six tasks and R-FRTDP required 69 seconds. Indeed,

the time reduction is quite significant compared to LRTDP, which demonstrates the

efficiency of using bounds to prune the action space and produce efficient trajectories.

We may also observe on Figure 5.4 that the action space pruning was much more

efficient for our resource allocation problem than it was for the racetrack problem. In

average, NPR-FRTDP took 4/7 the planning time that LRTDP required to solve the

same problems. With action pruning, in average R-FRTDP required only 1/12 the

planning time LRTDP needed, which is a higher gain than obtained with the racetrack.

Again, we explain this difference with the racetrack results by the fact that the goal

states are near of s0 with a resource allocation problem, and the updates permit to

tighten the bounds early in the planning process, which enables to prune the action

space. Also, since the initial bounds are very tight with our bounds compared with the

very loose initial bounds (Smith and Simmons, 2006) used for the racetrack, pruning

can be made very early.

5.2.7 Conclusion

This chapter presented many interesting results. First of all, the initial bounds we

proposed enable a faster convergence in comparison with the Singh and Cohn (1998)

bounds. These bounds have been implemented on a resource allocation problem, for

which the settings have been described. Then, we compared BRTDP with FRTDP in

the racetrack problem that Smith and Simmons (2006) developed. BRTDP was slightly

faster than FRTDP and the action pruning enables to further diminish the planning

time for both BRTDP and FRTDP.
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We also implemented BRTDP and FRTDP on a resourve allocation problem. In this

problem, FRTDP converges faster than BRTDP, and we argued that the low distance

between the goal states with s0 may explain this situation. Finally, we observed that

the action pruning is very efficient for our problem. We think this is due to the tight

initial bounds, and because the distance between the goal states with s0 is small.

The only condition for the use of our proposed bounds is that each task possesses

consumable and/or non-consumable limited resources, which we feel is a very frequent

problem in Artificial Intelligence.

An interesting research avenue would be to include the time for the generation of

our bounds. With a time dimension, it may be tricky to match the state of the tasks

within a global state as the starting and ending time of the states may not match.

Furthermore, the heuristic search rollout algorithm (Bertsekas, 2005), which is an

approximation of dynamic programming could use our marginal revenue lower bound

as its initial heuristic.

Another way of reducing the complexity of a problem, is by decomposing it.



Chapter 6

Approach Based on Problem

Decomposition

The previous chapter demonstrated how heuristic search, particulary with tight

bounds, can speed up the computing time. In this chapter, we propose a different ap-

proach. We decompose the problem with the goal of reducing the computing complexity

again.

In general, in the absence of any restrictions on how tasks and resources influence

each other, it becomes necessary to consider the joint state and action spaces of all

agents. Consequently, as the number of tasks and resources increase, the size of the

MDP increases exponentially. This means that it becomes very quickly impossible to

even model the problem, let alone solve it. Fortunately, in many real-world domains, the

interactions between agents are not arbitrary. In this chapter, we focus on decomposi-

tion techniques where the interactions between tasks and resources have particularities,

which permits to diminish the problem complexity. The following section proposes to

use Q-decomposition for a specific resource allocation problem.

6.1 A Q-decomposition Approach

6.1.1 Introduction

To solve efficiently problems where the resources are already shared among the

agents, but the actions made by an agent may influence the reward obtained by at least

another agent, we adapt Q-decomposition proposed by Russell and Zimdars (2003). In

our Q-decomposition approach (Plamondon et al. (2006c); Plamondon et al. (2007b);

Plamondon et al. (2007a)), a planning agent manages each task and all agents have

to share the limited resources. The planning process starts with the initial state in
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which each agent computes their respective Q-values. Then, the planning agents are

coordinated through an arbitrator to find the highest global Q-value by adding the

respective possible Q-values of each agent. We implemented Q-decomposition in a

heuristic search approach. Since the number of states and actions to consider when

computing the optimal policy is exponentially reduced with Q-decomposition, compared

to other known approaches, it allows to formulate the first optimal decomposed heuristic

search algorithm in a stochastic environments.

6.1.2 Q-decomposition for Resource Allocation

There can be many types of resource allocation problems, as represented in Figure

6.1. Firstly, if the resources are already shared among the agents (Problem 1), and the

actions made by an agent does not influence the state of another agent, the globally

optimal policy can be computed by planning separately for each agent.

A second type of resource allocation, represented in Problem 2, is where the resources

are already shared among the agents, but the actions made by an agent may influence

the reward obtained by at least another agent. For instance, a group of agents which

manages the oil consummated by a country falls in this group. These agents desire to

maximize their specific reward by consuming the right amount of oil. However, all the

agents are penalized when an agent consumes oil because of the pollution it generates.

Another example of this type comes from our problem of interest, explained in Section

4.7, where, in some scenarios, it may happens that the missiles can be classified in two

types: Those requiring a set of resources Res1 and those requiring a set of resources

Res2. This can happen depending on the type of missiles, their range, and so on. In this

case, two agents can plan for both set of tasks to determine the policy. However, there

are interactions between the resource of Res1 and Res2, so that certain combination of

resource cannot be assigned. In particular, if an agent i allocate resources Resi to the

first set of tasks Tai, and agent i′ allocate resources Resi′ to second set of tasks Tai′ ,

the resulting policy may include actions which cannot be executed together. The third

type of problem is where all resources are available to all tasks and no Q-decomposition

is possible. Still, heuristic search (Chapter 5), acyclic decomposition (Section 6.2), and

MTAMDPs (Section 6.3) can be used to diminish the planning time in this case.

To resolve conflicts between resources, we use Q-decomposition proposed by

Russell and Zimdars (2003) in the context of reinforcement learning. The primary

assumption underlying Q-decomposition is that the overall reward function R can be

additively decomposed into separate rewards Ri for each distinct agent i ∈ Ag, where

|Ag| is the number of agents. That is, R =
∑

i∈Ag Ri. It requires each agent to compute

a value, from its perspective, for every action. To coordinate with each other, each agent

i reports its action values Qi(ai, si) for each state si ∈ Si to an arbitrator at each learn-
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Figure 6.1: Different types of resource allocation problem.
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ing iteration. The arbitrator then chooses an action maximizing the sum of the agent

Q-values for each global state s ∈ S. The next time state s is then updated, an agent i

considers its Q-value as its respective contribution to the global maximal Q-value. That

is, Qi(ai, si) is the value of a state such that it maximizes maxa∈A(s)

∑

i∈Ag Qi(ai, si).

The fact that the agents use a determined Q-value as the value of a state is an extension

of the Sarsa on-policy algorithm (Rummery and Niranjan, 1994) to Q-decomposition.

Russell and Zimdars called this approach local Sarsa. In this way, an ideal compromise

can be found for the agents to reach a global optimum. Indeed, rather than allowing

each agent to choose the successor action, each agent i uses the action a′
i executed by

the arbitrator in the successor state s′i:

Qi(ai, si) = Ri(si) + γ
∑

s′i∈Si

Pai
(s′i|si)Qi(a

′
i, s

′
i) (6.1)

where the remaining consumable resources in state s′i are Resci
\ resi(ai) for a resource

allocation problem. Russell and Zimdars (2003) demonstrated that local Sarsa con-

verges to the optimum. In addition, this form of agent decomposition allows in some

cases the local Q-functions to be expressed by a much reduced state and action space.

Figure 6.2 gives an example of Q-decomposition. The two agents, dollars and euros,

start in state s0 and can attempt to move Left, Up, or Right, or it can stay put

(NoOp). The agents have to be coordinated so that they execute the same action at

the same time. Also, they have to execute an action until a goal state is reached. With

probability ǫ, each action has no effect; otherwise, the agents reach a terminal state

with rewards of dollars and/or euros as shown. If we assume rough parity between

dollars and euros, then the optimal policy is clearly to go Up. The question is how to

achieve this with a distributed architecture in which one agent cares only for dollars

and the other only for euros. Suppose the case where ǫ = 0.2 and γ = 0.95, and that the

two agents plan on their own. After they have converged, they send their Q-values to

the arbitrator which selects the global action which maximizes the Q-value of all action

combination for the agents. For this case, the Q-values computed by the arbitrator are

in Table 6.1. The optimal action in this scenario is the NoOp action. Indeed, by doing

nothing, the agents are penalized by the discount factor, afterwards they can execute

their optimal action (Left for dollars and Right for euros) in the subsequent state.

However, the NoOp action is by far the worse action, because the agents will obtain no

money. All other actions are by far better. Furthermore, the optimal action, which is

to go Up has a significantly lower Q-value than the NoOp action.

On the other hand, if the agents use Q-decomposition, the agents are able to con-

verge to the optimal. Indeed, Table 6.2 details the process of the first iteration of

Q-decomposition. In this first iteration, the arbitrator computes that the Up action

has the highest Q-value. In the next iteration of the planning process, the agents will

compute 0.48 for the value of state s0, and not 0.8, which they would have by planning
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Figure 6.2: Problem type for Q-decomposition (adapted from Russell and Zimdars

(2003)).

Table 6.1: Q-values for the agents planning independently with the problem of Figure

6.2, where ǫ = 0.2 and γ = 0.95.

Action Value

Left $0.988 and =C0.188 = 1.176

Right $0.188 and =C0.988 = 1.176

Up $0.63 and =C0.63 = 1.26

NoOp $0.93 and =C0.93 = 1.86
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independently. In this problem, the Q-decomposition permits for the agents to converge

to the globally optimal action, which is to go Up.

Table 6.2: Q-values for the agents using Q-decomposition at the first iteration with the

problem of Figure 6.2, where ǫ = 0.2 and γ = 0.95.
Action Value

Left $0.8 and =C0 = 0.8

Right $0 and =C0.8 = 0.8

Up $0.48 and =C0.48 = 0.96

NoOp $0 and =C0 = 0

For our resource allocation problem described in this section, Q-decomposition can

be applied to generate an optimal solution. Indeed, an optimal Bellman backup can be

applied in a state as in Algorithm 6.1. In Line 5 of the QDEC-BACKUP function,

each agent managing a task computes its respective Q-value. Here, Q⋆
i (a

′
i, s

′) determines

the optimal Q-value of agent i in state s′. An agent i uses as the value of a possible

state transition s′ its Q-value which is part of the maximal global Q-value for state s′

as in the original Q-decomposition approach. In brief, for each visited state s ∈ S,

each agent computes its respective Q-values with respect to the global state s. So

the state space is the joint state space of all agents. Some of the gain in complexity

to use Q-decomposition resides in the
∑

s′i∈Si

Pai
(s′i|s) part of the equation. An agent

considers as a possible state transition only the possible states of the set of tasks it

manages. Since the number of states is exponential with the number of tasks, using Q-

decomposition should reduce the planning time significantly. Furthermore, the action

space of the agents takes into account only their available resources which is much less

complex than a standard action space, which is the combination of all possible resource

allocation in a state for all agents.

The arbitrator functionalities are depicted in Lines 8 to 20. The global Q-value

is the sum of the Q-values produced by each agent managing each task as shown in

Line 11, considering the global action a. In this case, when an action of an agent i

cannot be executed simultaneously with an action of another agent i′, the global action

is simply discarded from the action space A(s). Line 14 simply allocates the current

value with respect to the highest global Q-value, as in a standard Bellman backup.

Then, the optimal policy and Q-value of each agent is updated in Lines 16 and 17 to

the sub-actions ai and specific Q-values Qi(ai, s) of each agent for action a.

The behavior of QDEC-BACKUP is now discussed and we start it by proving the

optimality of QDEC-BACKUP. This proof requires to demonstrate that the QDEC-

BACKUP function outputs the same optimal value as a standard Bellman backup.
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Algorithm 6.1 The Q-decomposition Bellman Backup algorithm (Plamondon et al.,

2007a).

1: Function QDEC-BACKUP(s)

2: V (s)← 0

3: for all i ∈ Ag do

4: for all ai ∈ Ai(s) do

5: Qi(ai, s)← Ri(s) + γ
∑

s′i∈Si

Pai
(s′i|s)Q

⋆
i (a

′
i, s

′)

{where Q⋆
i (a

′
i, s

′) = hi(s
′) when s′ is not yet visited, and s′ has Resci

\ resi(ai)

remaining consumable resources for each agent i}

6: end for

7: end for

8: for all a ∈ A(s) do

9: Q(a, s)← 0

10: for all i ∈ Ag do

11: Q(a, s)← Q(a, s) + Qi(ai, s)

12: end for

13: if Q(a, s) > V (s) then

14: V (s)← Q(a, s)

15: for all i ∈ Ag do

16: πi(s)← ai

17: Q⋆
i (ai, s)← Qi(ai, s)

18: end for

19: end if

20: end for

Lemma 6.1.1 A state for QDEC-BACKUP is updated in the same manner as for a

standard Bellman backup.

Proof: The following equation is used in QDEC-BACKUP to compute a Q-value:

Q(a, s) =
∑

i∈Ag

Ri(s) + max
ai∈Ai(s)

γ
∑

s′i∈S′

i

Pai
(s′i|s)Q

⋆
i (a

′
i, s

′) (6.2)

Since the reward can be additively decomposed for each task, Equation 6.2 may be

rewritten as:

Q(a, s) = R(s) +
∑

i∈Ag

max
ai∈Ai(s)

γ
∑

s′i∈S′

i

Pai
(s′i|s)Q

⋆
i (a

′
1, s

′) (6.3)

Since Q(a, s) =
∑

i∈Ag Qi(a, s) when the transition probability of each task considers

the actions performed on other tasks, Equation 6.3 may be rewritten as:

Q(a, s) = R(s) + max
a∈A(s)

γ
∑

s′∈S′

Pa(s
′|s)Q(a′, s′) (6.4)
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where Q(a′, s′) is the maximal Q-value for state s′. Indeed, since the arbitrator deter-

mines the maximal Q-value for a state, Q(a′, s′) = V (s′). Since Equation 6.4 is the

same as a Bellman backup, and Q(a′, s′) is the same as V (s), a Q-value is updated in

the same manner in QDEC-BACKUP as for a standard Bellman backup. �

A standard Bellman backup has a complexity of O(|A| × |SAg|), where |SAg| is the

number of joint states for all agents excluding the resources, and |A| is the number of

joint actions. On the other hand, the Q-decomposition Bellman backup has a complex-

ity of O((|Ag| × |Ai| × |Si)|) + (|A| × |Ag|)), where |Si| is the highest number of states

for an agent i, excluding the resources, and |Ai| is the highest number of actions for an

agent i. Since |SAg| is combinatorial with the number of tasks, so |Si| ≪ |S|. Also, |A|

is combinatorial with the number of resource types. If the resources are already shared

among the agents, the number of resource types for each agent will usually be lower than

the set of all available resource types for all agents. In these circumstances, |Ai| ≪ |A|.

In a standard Bellman backup, |A| is multiplied by |SAg|, which is much more com-

plex than multiplying |A| by |Ag| with the Q-decomposition Bellman backup. Thus,

the Q-decomposition Bellman backup is much less complex than a standard Bellman

backup. Furthermore, the communication cost between the agents and the arbitrator

is null since this approach does not consider a geographically separated problem.

6.1.3 Experiments and Discussion

The domain of the experiments is as described in Section 4.7. For the Q-

decomposition, the number of resource types has been fixed to 5, where there are 3

consumable resource types and 2 non-consumable resources types.

First, we implemented a standard LRTDP approach in which, a simple heuristic has

been used where the value of an unvisited state is assigned as the value of a goal state

such that all tasks are achieved. This way, the value of each unvisited state is assured

to overestimate its real value since the value of achieving a task ta is the highest the

planner may get for ta. Since this heuristic is pretty straightforward, the advantages

of using better heuristics are more evident. Nevertheless, even if the LRTDP approach

uses a simple heuristic, still a huge part of the state space is not visited when computing

the optimal policy.

We also implemented a QDEC-LRTDP approach where the backups are computed

using the QDECBACKUP function (Algorithm 6.1), and using the LRTDP algorithm.

In particular; the updates made in the CHECK-SOLVED function are also made using

the QDEC-BACKUP function. To implement QDEC-LRTDP, we divided the set of

tasks in two equal parts. The set of tasks Tai, managed by agent i, can be accomplished

with the set of resources Resi, while the second set of tasks Tai′, managed by agent Agi′ ,

can be accomplished with the set of resources Resi′. Resi had one consumable resource
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Figure 6.3: Efficiency of Q-decomposition LRTDP (QDEC-LRTDP) and LRTDP

(Plamondon et al., 2007a).

type and one non-consumable resource type, while Resi′ had two consumable resource

types and one non-consumable resource type. When the number of tasks is odd, one

more task is assigned to Tai′. There are constraint between the group of resources Resi

and Resi′ such that some assignments are not possible. These constraints are managed

by the arbitrator as described in Section 6.1.

The approaches described in this section are compared in Figure 6.3. As we can

see, the Q-decomposition permits to diminish the planning time significantly in our

problem settings. In addition , it seems to be a very efficient approach when a group

of agents have to allocate their respective resources where the action made by an agent

may influence the reward obtained by at least another agent.

Our experiments have shown that QDEC-LRTDP (Plamondon et al. (2006c);

Plamondon et al. (2007b); Plamondon et al. (2007a)) provides a potential solution to

solve efficiently stochastic resource allocation problems. Indeed, the theoretical and

experimental complexities of QDEC-LRTDP are significantly lower than for LRTDP.

While the discussion in this thesis focusses on resource allocation problems, QDEC-

LRTDP may be used in any type of problem where the overall reward function can be

additively decomposed into separate rewards for distinct agents. Indeed, the general

principle of the original Q-decomposition approach has to be applicable to justify using

QDEC-LRTDP.

An interesting research avenue would be to experiment Q-decomposition with other

heuristic search algorithms than LRTDP. HDP (Bonet and Geffner, 2003a), and LAO⋆

(Hansen and Feng, 2001) are both efficient heuristic search algorithms and may be
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greatly improved if combined with Q-decomposition. However, when the resources are

available to all agents, no Q-decomposition is possible. In this case, Bounded Real-

Time Dynamic Programming (BOUNDED-RTDP), presented in Section 5.2 permits to

focuss the search on relevant states, and to prune the action space A by using lower

and higher bound on the value of states.

The next section describes a decomposition made to the MDP model induced by a

specific particularity of our problem: Some tasks may create other tasks.

6.2 Decomposition for a Loosely-Coupled Resource

Allocation Problem

6.2.1 Introduction

There is an explosion of the state space in our type of problem, due to Bellman’s curse

of dimensionality (Bellman, 1957). To alleviate this, many researchers decomposed the

state space to diminish the planning time (Meuleau et al. (1998); Dolgov and Durfee

(2004); Wu and Castanon (2004)).

In this section, we focus on resource allocation problems where the interactions be-

tween tasks are localized (each task only affects a small number of neighbors). Central to

the model that we use in this section is the concept of a dependency graph that describes

the relationships between agents. The idea is very similar to other graphical models,

e.g., graphical games (Kearns et al., 2001), coordination graphs (Guestrin et al., 2003),

and multiagent influence diagrams (Koller and Milch, 2003), where graphs are used to

more compactly represent the interactions between agents to avoid the exponential ex-

plosion in problem size. Similarly, our representation can be exponentially smaller than

the size of the flat MDP defined on the joint state and action spaces of all agents. A

distinguishing characteristic of the graphical representation that we use is that it makes

more fine-grained distinctions about how agents affect each other: the problem is de-

composed in loosely connected components in the presence of tasks which may influence

the presence of other tasks. However, the states of a task are strongly connected since

all non-absorbing states are always reachable from each other.

We present below two novel decomposition techniques which solve efficiently the

problem when the strongly connected states are grouped in separate components

(Plamondon et al., 2005). These techniques are a specialization of the Markov De-

cision Process (MDP) framework, associated to our problem characteristics. Another

originality of our work is to consider effectively the criticality of each task, by defining

a weight factor. We now formalize the problem.
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6.2.2 Formulation of Loosely-Coupled Tasks Problem

We consider a state as a conjunction of tasks to accomplish by a planning agent.

A task corresponds to a work to accomplish for an agent. On the other hand, an

action corresponds to use a resource to accomplish a task. An action may change the

probability to execute a particular task, or all tasks. The tasks may be in many possible

states, which are strongly connected. The states are strongly connected because from

a non-absorbing state s in a task, we can transit to any other non-absorbing state s′ of

this task, and go back to s (Tarjan, 1972). Furthermore, we have some tasks which may

be created by another task. We consider the creation of a task as a stochastic process.

A task which may not create another task is considered as critical. The parents of a

critical task, considered as non-critical, have to be accomplish, because they may create

a critical task.

Figure 6.4 gives an example of the type of problem we are interested in this section.

On the figure, there are two possible tasks to accomplish : ta1 and ta2. Suppose the

problem begins in state s1. The states of task ta1 are strongly connected because from

a non-absorbing state s in ta1, we can transit to any other non-absorbing state s′ of

this task, and go back to s. Task ta1 is non-critical, since it may create ta2. When the

critical task ta2 is created, we cannot go back to the states of task ta1. Thus, the states

of a task are strongly connected, but a task can only be weakly connected to another

tasks.

Figure 6.4: Two tasks for which states are strongly connected. ta1 is a non-critical task,

while ta2 is a critical task.

Furthermore, the planning agent is under hard real-time constraints to produce an

effective policy. The very high number of states in this type of problem coupled with
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Figure 6.5: Acyclic graphs of task dependencies.

the time constraint makes it very complex.

We should note that a resource allocation problem is known as being NP-complete

(Zhang, 2002). The state space consists of the cross product of each task individual

state spaces and the available resources; the action space is the set of resource assign-

ment. Meuleau et al. (1998) proposed an approach where each task is solved optimally

in an independent manner. The solutions are merged afterwards with a greedy strat-

egy, thus producing an approximate solution. On the other hand, Dolgov and Durfee

(2004) extended Meuleau’s work by assigning resources to each task and then produc-

ing the global optimal policy. Another promising approach is to plan for the resources

separately (Wu and Castanon, 2004). In particular, the approaches of all cited authors

do not consider the fact that a task may create other tasks, which is the base of our

algorithms.

Task Weighting

We have developed an heuristic to weight the importance of each task; based on

the fact that some tasks are dependent on others in the sense where they may create

them. We can represent these dependencies between tasks with a graph. An important

characteristic for the problem we are interested in, is that the representation of task

dependencies in a graph produces a certain number of acyclic graphs. Note that an

acyclic graph is one that all state transitions always results in a state that were never

previously visited, thus implying a partial order on the set of states. Figure 6.5 repre-

sents the acyclic graphs where two tasks, ta1 and ta2, are in the environment. ta1 may

create task t3, and ta2 may create task ta4. In our problem setting, task ta3 and ta4,

which are leafs, are the only ones that are necessary to execute. The non-critical tasks

have to be executed only because they can create critical tasks. We use Algorithm 6.2

to define the weight factor W (ta) representing the relative importance to accomplish

each task ta.
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Algorithm 6.2 The task weighting algorithm (Plamondon et al., 2005).

1: Function TASK-WEIGHTING(DepG)

2: while DepG 6= null do

3: Remove from DepG a task ta, such that no descendent of ta is in DepG

4: if ta is a leaf task then

5: W (ta)← P (Fail(ta)|sta)× CONS(ta)

6: else

7: W (ta)←
∑

ta′∈|Ta|

P (C(ta′)|sta)×E(ta′|(C(ta′)|sta))×W (ta′)

8: end if

9: end while

The DepG graph contains many acyclic graphs, which nodes (group of tasks) are

affected a weight factor. As seen in Line 3 of the algorithm, the tasks are traversed

using a backward approach just like in the AO∗ algorithm (Nilsson, 1980) for an acyclic

graph. For a critical task tai, we define the weight factor W (tai) as the product of

the probability that the task is failed of being accomplished by the planning agent,

considering its current state (P (Fail(ta)|sta)), by the consequence it may inflict to the

planning agent (CONS(ta)). For a non-critical (non-critical) task, the weight is specified

according to the sum of each task ta′, as the product of the probability of creating task

(P (C(ta′)|sta)), by the expected number of created tasks ta′ (E(ta′|(C(ta′)|sta))), and by

the weight factor of ta′ (W (ta′)). The probabilities P (C(ta′)|sta) and P (Failta|sta) are

known a priori considering that no action is made. Consequently, the weight function

overestimates the weight of all tasks, since the probability of creating other tasks is

higher when no action is made, than with an optimal policy. However, the weight of

a task should not change as the computing of a policy is made, because some state

value may be overestimated. Considering this, we have used this approach to define the

probability, which is an approximation. The next section describes two decomposition

strategies to reduce the planning complexity.

6.2.3 Decomposition Techniques

Acyclic Decomposition Algorithm

An efficient decomposition technique may regroup together strongly connected states

(Meuleau et al., 1998). In the same sense, it is known that a planning problem which

may be represented with an acyclic graph, instead of a cyclic one, is generally easier

to solve (Hansen and Feng, 2001). We recall that an acyclic graph is one that all state

transitions always results in a states that were never previously visited, thus implying

a partial order on the set of states. On the other hand, a cyclic graph may visit certain
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Figure 6.6: The acyclic graph of cyclic components.

states more than one time. The idea we have here is to transform our problem in

an abstract acyclic one, which contains many cyclic components (i.e. states that may

transit to each other many times). A component corresponds to the states of a group

of tasks, and the graph contains a component for each possible task combination. Since

each state of a task can transit to each other many times, the components are cyclic.

On the other hand, the acyclic graph represents the possible task transitions. One may

use Tarjan (1972) linear algorithm for detecting the strongly-connected components of a

directed graph to create the acyclic graph. Figure 6.6 shows the acyclic graph when task

ta1 (a) or task ta1 and ta2 (b) of Figure 6.5 are in the environment. All nodes represent

a cyclic component. This graph supposes that a task may create one other task in

maximum. The significance of a link in Figure 6.6, means simply a change in the tasks

the planning agent has to achieve. Thus, it has a task transition meaning, as opposed

to a task creation in Figure 6.5. Once the abstract acyclic graph is formed, we can solve

it using a backward approach just like in the AO∗ algorithm (Nilsson, 1980). Algorithm

6.3 describes how we calculate the value Vc of each strongly connected component c of

an acyclic graph AcG.

Algorithm 6.3 The acyclic decomposition algorithm (Plamondon et al., 2005).

1: Function ACYCLIC-DEC(AcG)

2: while AcG 6= null do

3: Remove from AcG a component c, such that no descendent of c is in AcG

4: Vc ←MDP-ALGO(c)

5: end while
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This algorithm solves each component, using an MDP algorithm (“MDP-

ALGO(c)”), from the leaf to the root of the graph. This way, each component may

only transit to a solved component, thus each component have to be solved one time.

“MDP-ALGO(c)” may be any algorithm to solve an MDP, such as standard approaches

like value iteration or policy iteration. For example, in Figure 6.6 (b), in the first iter-

ation, we can choose to remove whichever of ta3 or ta4, and solve the component using

MDP-ALGO(c). Then, if we removed ta3 in the first iteration, we may now remove ta4,

or vice versa. When both ta3 and ta4 are removed, ta1 and ta2 may be removed. We

remove components in this order, until the component ta1, ta2 is removed and solved.

Theorem 6.2.1 The acyclic decomposition algorithm produces an optimal policy.

Proof: It is known that the AO∗ algorithm generates an optimal policy of a problem

represented by an acyclic graph (Nilsson, 1980). However, the nodes in our graph

regroups many states (component), while in AO∗, it is an atomic state. Thus, to prove

the optimality of the acyclic decomposition algorithm, we have to determine whether a

component exhibits the same characteristics as a state. The action of all states in the

component are optimal since the they are computed using an optimal MDP algorithm.

Then, we could say that the component, which is an abstract state, has an abstract

optimal action. Thus, the computation of the optimal action for a state in AO∗, may

be viewed as the computation of the optimal abstract action for a component in our

algorithm. It follows that the acyclic decomposition algorithm produces an optimal

policy. �

The planning time is reduced compared to a standard approach, however, as we

can observe on Figure 6.7 of Section 6.2.4, it still takes about 20 seconds to plan for

a problem with three initial tasks. For our hard real-time problem, we should further

reduce the complexity of the planner. To this end, the next section introduces an on-

line decomposition strategy to further reduce the planning time; at the compromise,

however, of producing an approximate solution.

On-line Decomposition Algorithm

A standard dynamic programming (i.e. value iteration or policy iteration), or the

previous acyclic decomposition approach to solve the problem is done off-line. Indeed,

all the computation is made before executing any action. Since we need a decision in

real-time, we introduce an on-line approach, in which planning and the execution of

actions are carried out concurrently. This approach is elaborated based on the acyclic

decomposition approach. Indeed, the approach plans a separate policy for each task

(i.e. component with one task), using the ACYCLIC-DEC(graph AcG) function. A

solution for one task is produced very quickly using the acyclic algorithm. We adopt



CHAPTER 6. APPROACH BASED ON PROBLEM DECOMPOSITION 109

this approach to plan for each task, because each task are strongly connected, but

loosely connected with the other tasks. Algorithm 6.4 overviews our decomposition

approach.

Algorithm 6.4 The on-line decomposition algorithm (Plamondon et al., 2005).

1: Function ON-LINE-DEC(S)

2: for all task ta ∈ |Ta| do

3: Vta ← ACYCLIC-DEC(Sta)

4: end for

5: repeat

6: if the state of a task has changed then

7:

π(s)← arg max
a∈A(s)

∑

ta∈Ta

R(Sta) +
∑

s′ta∈Sta

Pata
(s′ta|Sta)Qta(ata, s

′
ta)

8: end if

9: until the scenario is over

The first part of the algorithm computes a value function Vta for the state space

of each task Sta in the environment using a standard dynamic programming approach

(“ACYCLIC-DEC(Sta)”). For example, if one task is in the environment, we compute

the value function for this task only, and all of its potential descendants. When the

component value function of each task is made, we proceed to the on-line phase. In

particular, we determine the global sub-optimal action to execute each time a task

changes. The local and global resource constraints on the amount that can be used

had been verified in the off-line planning of each task. When computing the global

action, we verify the local and global constraint for this state only, thus producing

an approximative solution. We now detail the results we have obtained using three

algorithm; standard dynamic programming, the acyclic decomposition as presented by

Algorithm 6.3 of Section 6.2.3, and the on-line decomposition as presented by Algorithm

6.4 of Section 6.2.3.

6.2.4 Experiments and Discussion

We tested the problem on the domain described in Section 4.7. A difference from the

initial domain is that |Sta| = 10, thus each task can be in ten distinct states. We

computed a policy with a certain number of initial tasks which may creates other tasks.

From the results, as shown on Figure 6.7, we can conclude that planning an optimal

policy, using a standard dynamic programming approach (value iteration), for this

problem is very complex. The acyclic decomposition algorithm reduces the planning
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Figure 6.7: Planning time for different cases (Plamondon et al., 2005).

time, but it is still too high for our real-time application. So, this approach is promising,

but we should improve it in the future. On the other hand, the on-line decomposition

algorithm produces an approximative policy in a very short time.

Table 6.3: Number of times that we obtain the “optimal” with our on-line decomposition

planner (Plamondon et al., 2005).

# of tasks Average cases Worst cases

1 100 ±0% 100

2 99,94 ±0, 035% 99,90

3 99,91 ±0, 042% 99,85

Table 6.3 details the percentage of the optimal obtained with our on-line decompo-

sition planner. We can see that the value of the policy decreases when the number of

tasks augment. As a matter of fact, when one threat is present, the policy is optimal,

because it uses the optimal acyclic decomposition algorithm for the task.

To sum up, we can note that, we are interested by a multi-tasks problem, where the

presence of some tasks is dependent on the presence of others. Such problem produces

an enormous state space. To compute a policy in a timely manner for this sort of

problem, we have decomposed the state space. In particular, a task is strongly coupled

within its own possible states, but weakly coupled with the other tasks. In our approach

(Plamondon et al., 2005), we estimated the relative importance of achieving each task

using a weight function. We have solved our resource allocation problem in an effective

manner using our optimal acyclic or approximate on-line decomposition approaches.
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Evidently our decomposition algorithms can be improved in different ways. For

example, computing the solution using the acyclic decomposition approach where all

components are solved using the on-line decomposition approach, instead of a standard

one, seems promising.

The following section proposes another decomposition technique. The present sec-

tion presented a decomposition technique based on the acyclicity of the task transition

graph. To further reduce the complexity of a planning problem, one can assign an agent

to each resource type. The agent are coordinated using a central agent to generate a

near-optimal policy.

6.3 An MTAMDP Approach

6.3.1 Introduction

In the previous section, the resources where considered as shared by the planning

agent. In this section, the problem is decomposed so that a planning agent manages

each specific resource. The separate policies produced by the agents, if not coordi-

nated, are not optimal for two reasons. Firstly, some resources may have positive and

negative interactions since the expectation of realizing a certain task ta1 by resource

res1 is changed when allocating another resource res2 simultaneously on task ta1. Sec-

ondly, the resources have to be distributed efficiently among the tasks to accomplish.

To achieve that, we have coordinated the planning agents together during the plan-

ning process through a central agent, so that they can produce a near-optimal policy.

Each planning agents generate a policy to allocate their resources using a MDP. This

method is called “Multiagent Task Associated Markov Decision Process” (MTAMDP)

(Plamondon et al. (2006b); Plamondon et al. (2006a)) since the planning agents are

related to each other only because they have the same tasks to accomplish. The results

obtained using MTAMDP are near-optimal, while the convergence time is very small

compared to a standard Multiagent Markov Decision Process (MMDP) (Boutilier et al.,

1999b) approach.

Multi-Agent Markov Decision Processes (MMDPs)

Since resource allocation problems are known to be NP-Complete Zhang (2002), one

may decompose the previous problem into multiple planning agents. To do so, Multi-

Agent Markov Decision Processes (MMDPs) (Boutilier et al., 1999b) may be a very

suitable modelling framework. In an MMDP the individual actions of many planning

agents interact so that the effect of one agent’s actions may depend on the actions

taken by others. Furthermore, an MMDP takes the agents to be acting on behalf of
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some individual; therefore, each has the same utility or reward function R. Indeed, an

MMDP is like an MDP, except that P now refers to the probabilities of joint actions.

In a MMDP, the joint action space is considered and |A| is exponential with the

number of resource types, as demonstrated in Section 3.1.1. On the other hand, if an

agent plans for each resource type, as with the MTAMDP approach presented in this

section, the number of actions to consider in a state is:

nbAgents
∑

i=1

nbChoicesi (6.5)

Here, the number of actions is the sum of the possible actions of each resource. The

number of Q-values to compute in a state, if three available resource types are available,

with each ten possible actions, is 10×3 = 30. The value of nbChoicesi is still, however,

exponential for each planning agent, as the number of tasks augment. Indeed, a resource

allocation problem is still an NP-Complete problem, even when one resource type is

available (Zhang, 2002).

A central agent computes the Q-value of all action combinations using the new

efficient approach that will be detailed in the subsequent sections. The next section

describes in a more formal way MTAMDPs, which significantly reduces computational

complexity associated with the high number of possible resources.

6.3.2 Related Work

The complexity of our problem is exponential according to the number of resources and

tasks, and many approximations and heuristics have been proposed (Meuleau et al.

(1998); Wu and Castanon (2004); Aberdeen et al. (2004)). However, all these authors

do not consider positive and negative interactions among resources. Their approaches

are consequently not very suitable to the type of problem tackled in this section, since

in many real applications there are positive and negative interactions among resources.

An effective approach, as considered in the current paper, is to plan for the resources

separately as proposed by Wu and Castanon (2004). In this section, a different and

more general approach is described, where each resource is coordinated by a central

agent, instead of sequentially.

Russell and Zimdars (2003) propose another central agent coordination scheme.

Their Q-Decomposition Reinforcement Learning coordination process determines the

Q-values which maximize the sum for each states at each learning iteration. An im-

portant assumption of this method is that each agent should have its own independent

reward function. Thus, for a resource allocation problem, there would have an agent for

each task to achieve. This is different than the approach proposed in this section where

there are an agent for each resource type. In their setting, their approach is optimal,



CHAPTER 6. APPROACH BASED ON PROBLEM DECOMPOSITION 113

but if resource constraints are considered, the policy has to consider the entire state

space. Indeed, the value of a state of a task would have a dependence on the state of the

other tasks, because of resource constraints. The Q-Decomposition may be combined

with the MTAMDP method to further reduce the planning time.

Since resources have local and global resource constraints on the number

that be used, the problem here can be viewed as a constrained Markov de-

cision process (Bertsekas (2005); Feinberg and Shwartz (1996); Dolgov and Durfee

(2004); Altman (1999)). In this context, dynamic programming (Bertsekas (2005);

Feinberg and Shwartz (1996)) or linear programming (Dolgov and Durfee, 2004) may

be used to obtain a policy. Much work has been done in this field, but none of it coor-

dinate separate agents which have positive and negative interactions among resources

and produces a near-optimal policy as in this section.

Another interesting approach is that of Dolgov and Durfee (2004). They proposed

a mixed integer linear programming formulation of a stochastic resource allocation

problem. The planning time is greatly reduced compared to a large Multiagent Markov

Decision Process (MMDP) (Boutilier et al., 1999b) on the joint state and action spaces

of all agents. However, their approach supposes a static allocation of resources, while

this thesis is interested in a dynamic allocation to consider contingencies. The problem

is now modelled in more detail.

6.3.3 A Multiagent Task Associated Multiagent Process

(MTAMDP) Method

An abstract schematization of the approach proposed in this section, which extends

MMDPs, to solve efficiently a resource allocation problem is described in Figure 6.8

where each planning agent (i1, i2, and i3) manages one type of resource to accomplish

the tasks.

The dotted line in the Figure represents agent i1 which manages resource type res1

to accomplish all tasks. This way, each agent can compute a Q-value (Qi1 , Qi2 , Qi3).

As a matter of fact, there are two reasons why a local value function of a planning agent

needs to be adjusted, according to an action from another agent.

First of all, the resources should be divided between the tasks in the case of possible

simultaneous actions. This aspect is explained with an example. Suppose there are two

identical tasks (ta1 and ta2) in the environment, which are in a particular state.

Furthermore, there are two planning agents (i and i′) each of which manages one

unit of resource (res1 and res2). Suppose that using each resource is 50% likely to

achieve any task (i.e. 50% likely that the task is realized, and 50% that the task is not

realized). Now, suppose that both planning agents assign their respective resource to
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Figure 6.8: A multiagent task associated resource allocation problem (Plamondon et al.,

2006b).

task ta1. In these conditions, task ta1 is 75% likely to be achieved1, while task ta2 still

has 0% of being achieved. As a consequence, there is expected to remain 0.25+1 = 1.25

tasks in the environment.

On the other hand, if both planning agents had coordinated and used their resources

on a different task, both tasks would have been achieved at 50%. In this case, there is

expected to remain only 0.5 + 0.5 = 1 task in the environment. This simple example

shows why it is better for the planning agents to divide their resources between the

tasks in the case of possible simultaneous actions.

The second reason why the planning agents should coordinate is to benefit from

positive interactions among resources and to alleviate the negative ones. Indeed, the

expectation of realizing a certain task ta1 by a unit of resource res1 could be changed

positively or negatively when allocating another unit of resource res2 simultaneously

on task ta1.

A positive interaction between two resources used simultaneously produces a higher

percentage to realize a task than using these two resources separately. On the other

hand, a negative interaction between two resources used simultaneously produces a

lower percentage to realize a task than using these two resources separately.

The general idea proposed in this section to solve efficiently the described resource

allocation problem is to coordinate the different agents at each iteration of the planning

algorithm. Indeed, all existing algorithms to solve an MDP are iterative, thus the

approach presented here should be pretty extensible. Figure 6.9 describes this process.

For example, if n iterations are needed for each planning agent to converge, then n

coordination activities are made.

11− 0.52 = 0.75
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Figure 6.9: The iterative coordination process (Plamondon et al., 2006b).

Adjusting the Q-value of a Planning Agent

The central agent permits reaching a near global optimum for the planning process

by coordinating the different planning agents, as shown in the experiments. The two

reasons why the respective policies of the planning agents should be coordinated lead to

the definition of two subfunctions — ADJUST-I(a) (interactions) and ADJUST-SA(a)

(simultaneous actions). The ADJUST-I(a) function is defined as follows:

Definition 6.3.1 ADJUST-I(a): This function adjusts the task-Q-values of each plan-

ning agent i, considering a global action a, in a global state s. The adjustment is made

according to the interactions between the actions of each other planning agent i′.

Before detailing the calculus to obtain the adjusted Q-value according to the interactions

with another action, aInterita
(aita , s|a

′
i′ta

) ∈ aita is introduced as the part of action aita

in interaction with a′
i′ta

. In this context, the following definition is given:

Definition 6.3.2 Interaita
(aiInterta

(aita , s|a
′
i′ta

), s|a′
i′ta

) is the modified efficiency of ac-

tion aiInterta
(aita , s|a

′
i′ta

) in state s knowing that action a′i′ta is also executed.

For example, if Interaita
(aiInterta

(aita , s|a
′
i′ta

), s|a′
i′ta

) = 0.7, it means that

aiInterta
(aita , s|a

′
i′ta

), knowing that a′
i′ta

is also used, has its efficiency at 70% of its regular

one. In addition, both the ADJUST-I(a) and ADJUST-SA(a) functions need an upper

bound on the value that a state may take in a specific iteration. The definition of this

term has a great effect on the quality of the approximation obtained for the approach

in this section. In particular, the upper bound is defined as follows:

Definition 6.3.3 UpBounds
aita

represents the maximum value that agent i may expect

to obtain in state s, when executing action aita. All upper bounds are specified at each

iteration of the planning algorithm.

The heuristic used to determine the upper bound for a state s, and action aita by

agent i, is the highest value of a possible state transition. A possible state transition is
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considered as a state for which Paita
(s′|s) > 0. This way, the upper bound overestimates

the possible value of a state since it is very improbable that an action would guarantee

reaching the upper bound. This upper bound provides an approximation of sufficient

quality to address the problem at hand. The Algorithm 6.5 to obtain the value of

ADJUST-I(a) for a specific global a, in a state s is now described. In the algorithm the

noOp term signifies the no-operation action.

Algorithm 6.5 The algorithm for considering interactions (Plamondon et al., 2006b).

1: Function ADJUST-I(a)

2: for all m ∈ Ag and ta ∈ Ta do

3: if aita 6= noOp then

4: nullaita
← Qita(noOpaita

, s(Resita \ res(aita)))

5: deltaaita
← Qita(aita , s)− nullaita

6: for all m′ ∈ Ag different from i do

7: if ai′ta 6= noOp then

8: inter ← Interaita
(aiInterta

(aita , s|a
′
i′ta

), s|a′
i′ta

)

9: if inter 6 1 then

10: deltaaita
← deltaaita

× inter

11: else

12: gain←
deltaaita

UpBounds
aita

−nullaita

13: nGain← 1− (1−gain
inter

)

14: deltaaita
← min(deltaaita

× nGain
gain

, deltaaita
× inter)

15: end if

16: end if

17: end for

18: end if

19: end for

20: for all m ∈ Ag and ta ∈ Ta do

21: Qita(aita , s)← nullaita
+ deltaaita

22: end for

Line 4 of the algorithm represents the value of an action which has an interaction

of 0. The intuition is that doing nothing (noOpaita
), and subtracting the resource

used by the action, has the same value as doing an action with the resource which

is sure of not realizing its purpose. The results of Line 5 is the difference of utility

from not considering the interactions to consider an interaction of 0. Afterwards, two

cases to compute the Q-value of the current planning agent, considering an interaction

with another planning agent are possible. Firstly, in Line 9, negative interactions are

considered such that inter 6 1. In this case, deltaaita
is adjusted by multiplying it

with the interaction. On the other hand, if the interaction is positive (i.e. Line 11)
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the adjustment is more complex. The Line 12 represents the “gain” the current action

has made according to the upper bound it may reach. Then, this “gain” is reviewed

considering the interaction in Line 13. The new deltaaita
is obtained by multiplying it

with a fraction of the gain of the interaction and the gain without interaction. Finally,

in Line 21 all task-Q-values are updated considering the new deltaaita
. The update of

all task-Q-values is made after all adjustment have been done, thus the reason of the

summation in Line 20.

To consider simultaneous actions, the ADJUST-SA(a) function is used, and is de-

fined as follow:

Definition 6.3.4 ADJUST-SA(a): This function adjusts all task-Q-values of each

planning agent i, considering a global action a, in a global state s. The adjustment

is made according to the simultaneous actions of all other planning agents i′.

Algorithm 6.6 details the ADJUST-SA(a) function. The first part of the algorithm

(i.e. Lines 4 to 12) finds the highest upper bound, considering all agents. The second

part (i.e. Lines 13 to 19) calculates two terms. Firstly, sum represents what the

agents expects to gain by planning for their action, by planning independently. Then,

val computes the maximum value that all agents may have, considering that they are

planning on the same task. When these two terms are computed, in Line 22 the gain of

value of planning for this action is multiplied by the fraction val/sum. In this line, the

new Q-value is also affected to this “adjusted” gain. Like in the previous algorithm,

the update of all task-Q-values is made after all adjustment have been done.

Now, the central agent knows how to compute the adjusted Q-value of each planning

agent in a state, given the action of the other planning agents. The other function the

central agent uses in its coordination process is the GLOBAL-VALUE() one.

Determining the Value of a Global Action

To determine the action to execute in a state, the central agent has to calculate

a global Q-value, considering each planning agent Q-value. This is done in a precise

manner by considering the task-Q-values. Before introducing the algorithm, we recall

that a planning agent for each resource type, and a mNoOp planning agent for the

noOp (no operation) action are considered. The noOp action has to be considered since

this action may modify the probability to achieve certain tasks in a state.

Algorithm 6.7 determines a precise value of the adjusted task-Q-value of many

planning agents in a state. The central part of this algorithm is in Line 6 where the

value of a task is computed, according to all agents. Here, the maximum between the

Q-value of the current agent i, and the gain that the current agent may offer is taken

as the value val. In this case, the Q-value of a planning agent i is subtracted by the
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Algorithm 6.6 The algorithm for considering simultaneous actions (Plamondon et al.,

2006b).

1: Function ADJUST-SA(a)

2: for all ta ∈ Ta do

3: bound← R(sta|sta = ¬goal)

4: for all m ∈ Ag do

5: if aita 6= noOp then

6: nullaita
← Qita(noOpita, s(Resita \ res(aita)))

7: if UpBounds
aita

> bound then

8: bound← UpBounds
aita

9: noOpG← nullaita

10: end if

11: end if

12: end for

13: for all m ∈ Ag do

14: if aita 6= noOp then

15: deltaaita
← Qita(aita , s)− nullaita

16: sumta ← sumta + deltaaita

17: valta ← valta + (((bound− noOpG)− valta)× (
deltaaita

UpBounds
aita

−nullaitaa

))

18: end if

19: end for

20: for all m ∈ Ag do

21: if aita 6= noOp then

22: Qita(aita , s)← nullaita
+ (deltaaita

× valta
sumta

)

23: end if

24: end for

25: end for

mNoOp planning agent, because each agent considers also the noOp action. The last

function that the central agent needs to coordinate the planning agent in a near-optimal

manner at each iteration is described; the adaptation of the value iteration (Bellman,

1957) algorithm for MTAMDPs, is presented in the following section.

Value Iteration for MTAMDPs

The value iteration MTAMDP algorithm is presented in Algorithm 6.8. In lines 6

to 11 of this algorithm, a Q-value is computed for all task-state-action tuples for each

planning agent. The agents are limited by the local and global resource constraints

while planning their respective policies. Afterwards, in lines 15 and 16, the central agent
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Algorithm 6.7 The algorithm for Computing the Q-value of a state (Plamondon et al.,

2006b).

1: Function GLOBAL-VALUE()

2: Q(a, s)← 0

3: for all ta ∈ Ta do

4: val← QmNoOp
ta (amNoOp

ta , s)

5: for all m ∈ Ag do

6: val ← max(Qita(aita , s), val + ((R(sta|sta = goal) − val) × (Qita(aita, s) −

QmNoOp
ta (amNoOp

ta ))))

7: end for

8: Q(a, s)← Q(a, s) + val

9: end for

adjusts the value of all action combinations, in all possible states using the ADJUST-

I(a) and ADJUST-SA(a) functions (i.e. Algorithm 6.5 and 6.6). When the adjusted

value of each action is determined, the global value V ′(s) is computed in Line 17. If

this global Q-value is the maximum one at present, the value of each planning agent is

assigned to the adjusted Q-value (i.e. V ′
i (si) ← Qi(ai, si) in Line 20). The new value

of the state is also assigned to the global value obtained by GLOBAL-VALUE() (i.e.

V ′(s)← Q(a, s) in Line 22). When the global value function has converged, the agents

use their own policy for execution. All the performed experiments, as presented in the

next section, resulted in a convergence. We have not a formal theorem to prove the

convergence of MTAMDPs, nor its near-optimality. These proofs are for future work.

Merging the Acyclic Decomposition and MTAMDP Approaches (MTAMDP

Decomposition)

The merging of the acyclic decomposition of Section 6.2.3 and the MTAMDP ap-

proaches is pretty straightforward . Indeed the line Vc ←MDP-ALGO(c, ǫ) in Algorithm

6.3 is now Vc ←MTAMDP-VI(c, ǫ) (Plamondon et al., 2006a). The fact that only this

simple change is needed demonstrates the flexibility and extensibility of both these

approaches.

6.3.4 Experiments and Discussion

Modelling a stochastic resource allocation problem using the MTAMDP decompo-

sition approach allows reducing the number of actions to consider in a given state.

In particular, the difference in complexity between MMDPs and MTAMDPs resides

in the reduction of the computational complexity from using the complex Bellman
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Algorithm 6.8 The value iteration for MTAMDPs algorithm (Plamondon et al.,

2006b).

1: Function MTAMDP-VI(S, ǫ)

2: returns a value function V Ag

{Planning agents part of the algorithm}

3: repeat

4: V ← V ′

5: δ ← 0

6: for all m ∈ Ag do

7: Vi ← V ′
i

8: for all si ∈ Si and ai ∈ Ai(s) do

9: Qi(ai, si)← R(si) +
∑

s′i∈Si

Pai
(s′i|si)Vi(s

′
i(Resi \ res(ai)))

10: end for

11: end for

{Central agent part of the algorithm}

12: for all s ∈ S do

13: V ′(s)← R(¬s)

14: for all a ∈ A(s) do

15: ADJUST-I(a)

16: ADJUST-SA(a)

17: Q(a, s)← GLOBAL-VALUE()

18: if Q(a, s) > V ′(s) then

19: for all m ∈ Ag do

20: V ′
i (si)← Qi(ai, si)

21: end for

22: V ′(s)← Q(a, s)

23: end if

24: end for

25: if |V ′(s)− V (s)| > δ then

26: δ ← |V ′(s)− V (s)|

27: end if

28: end for

29: until δ < ǫ

30: return V Ag

equation by MMDPs, in contrast to using the ADJUST-I(a), ADJUST-SA(a), and

GLOBAL-VALUE() functions when computing the value of each action combination

by MTAMDPs.

The domain of the experiments is as described in Section 4.7. Furthermore, the
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different resources have their efficiency modified when used in conjunction on a same

task, thus producing positive and negative interactions among resources. Also, a non-

critical task may create a critical task, but not vice versa, thus the task transition is

acyclic.

We have compared four different approaches (Plamondon et al., 2006a). The first

one is the MMDP approach as described briefly in Section 6.3.3. MMDP is computed

as a traditional “flat” MDP on the joint action and state spaces of all agents. The

second approach is the MTAMDP as described in Algorithm 6.8. The third one is the

“one step MTAMDP” where the adjustment of the Q-values is made only at the last

iteration for the planning agents. Thus, when each planning agent has converged, the

Q-values of all agents are adjusted, and used for execution. The fourth approach is the

“no coordination” where each planning agent plans resources completely independently

of each other. We have compared these four approaches in both the standard (no acyclic

decomposition), and acyclic decomposition mode, to efficiently consider the creation of

tasks by other tasks.

We compare the MTAMDP approach with an MMDP approach in Figure 6.10,

where each agent manages a distinct resource type. The acyclic decomposition algo-

rithm further reduces the planning time for the four different approaches as presented

in Figure 6.11. The results are very encouraging. For instance, it takes 51.64 seconds

to plan for an acyclic decomposition MTAMDP approach with five agents. The acyclic

decomposition MTAMDP approach solves the same type of problem in an average of

0.72 seconds.
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Figure 6.10: Planning time using no acyclic decomposition (Plamondon et al., 2006a).
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Figure 6.11: Planning time using the acyclic decomposition (Plamondon et al., 2006a).

Table 6.4 details how far the expected value of the MTAMDP, one step MTAMDP,

and no coordination approaches are from an optimal MMDP approach. With one agent,

all approaches are optimal since no coordination is needed. This result suggests that

the GLOBAL-VALUE() function is optimal. All the tests performed with two agents

resulted in an optimal policy for the MTAMDP approach. This result suggests that the

GLOBAL-VALUE() function is optimal, and a formal theorem to proof that is for future

work. One can also observe that when the agents do not coordinate, the resulting policy

is far from the optimal, which is not the case for the MTAMDP coordination approach.

The one step MTAMDP could be a viable approach in certain critical situations, since

the solution is produced much faster than the MTAMDP approach while providing a

near-optimal policy.

Table 6.4: The percentage of the optimal obtained with the different approaches

(Plamondon et al., 2006a).

MTAMDP One step MTAMDP No Coordination

1 agent 100% 100% 100%

2 agents 100% 99.89% 97.48%

3 agents 99.84% 99.63% 94.20%

4 agents 99.79% 99.55% 91.63%

5 agents 99.67% 99.41% 89.37%

A new approach has been proposed to tackle the planning problem for resource allo-
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cation in a stochastic environment. The Multiagent Task Associated Markov Decision

Process (MTAMDP) (Plamondon et al. (2006b); Plamondon et al. (2006a)) framework

has been introduced to reduce the computational leverage induced by the high num-

ber of possible resources. The experiments has shown that the MTAMDP provides a

potential solution to solve efficiently real-time stochastic resource allocation problems

with positive and negative interactions.

A way to improve the proposed MTAMDP consists of providing a more precise

upper bound on the value that a Q-value may have. Currently, the approach simply

considers the maximum value of the possible states transitions. This way, the upper

bound overestimates the possible value of a state since it is very improbable that an

action would guarantee reaching the upper bound. Other heuristics need to be explored

to define the upper bound.

The Q-Decomposition approach proposed by Russell and Zimdars (2003) is approx-

imative for the resource allocation problem considered here. However, it may be com-

bined with the MTAMDP method to further reduce the planning time. Indeed, the

Q-Decomposition would decompose the problem in tasks, and the MTAMDP method

decomposes the problem in resources. Thus, this would permit two degrees of decom-

position.

Another way to improve MTAMDPs may be to coordinate the agents using a Partial

Global Planning (PGP) (Decker and Lesser, 1992) approach instead of a central agent.

The PGP approach solves the bottleneck effect induced by the central agent. Further-

more, the coordination will be more precise, as only interacting agents will coordinate

with each other. Other promising future work is to extend the MTAMDP approach

with that of Singh and Cohn (1998) to use an upper bound and a lower bound on the

value of each state. The Singh and Cohn approach needs some modifications to be

used for the resource allocation problem considered here, as positive and negative in-

teractions were considered here. The idea is to solve the problem using the MTAMDP

approach, but with a upper and lower bounds on the value of each state.

The next chapter details the implementation of LRTDP in a very realistic profes-

sional simulator.



Chapter 7

Implementation in Surface Air

Defence Model (SADM)

7.1 SADM

This chapter explores a more realistic implementation of the problem described in

Section 4.3.2. We solve the problem using heuristic search, where in particular, Labeled

Real-Time Dynamic Programming (LRTDP) (Bonet and Geffner, 2003b) is applied.

In BAE System’s Surface Air Defence Model (SADM) (SADM), the time for

weapon to intercept a threat depends on the range, the type and the speed of the

threat. In addition, weapons cannot fire at threats freely. Some constraints apply

depending on their incoming azimuth and their distance from the own platform. In our

example, we consider that the own platform is equipped with two Separate & Track

Illumination Radar (STIR), two Ship-Air Missiles (SAM) launchers, a Gun and a Close-

In Weapon System (CIWS) for hardkills and with four chaff launchers and one jammer

for softkills. To ease example understanding all threats are assume to be the same type

but with different starting range and speed1. The table 7.1 describes how weapons are

constrained and what are their probability of success.

In our application, weapons are constrained during an episode: There exists unary

constraints that specify which threats are reachable regarding their distance from the

own platform and the range of weapon, and binary constraints that bind firing weapons

to STIRs depending on threats STIRs can “see”. Few constraint of resource limitations

already exists.

On the other hand, softkill modelization is more complex. In our model, chaffs can

be launched following four fixed directions given in Figure 7.1 and using two mode,

seduction or distraction. Seduction must be used when a threat already locked the own

1Threats speed is assumed to remain constant during an engagement.
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Hardkill Constraints

C1: A SAM must be guided by a STIR from fire time to interception time,

C2: A Gun must use a STIR at fire time,

C3: Two STIRs cannot target the same threat.

Hardkill Blind Zones

Base State 0 to 360◦ 1 STIR, 1 Gun, 1 CIWS, 2 SAMs

Sector Angles Difference from Base state

A 345 to 15◦ No CIWS

B 15 to 60◦ No difference – Base state

C 60 to 120◦ An additional STIR

D 120 to 145◦ No difference – Base state

E 145 to 215◦ No Gun

F 215 to 240◦ No difference – Base state

G 240 to 300◦ An additional STIR

H 300 to 345◦ No difference – Base state

Weapon Range Probability of success

SAM From 2.2 to 20km 95%

Gun From 1.5 to 5km 50%

CIWS From 0.2 to 2km 10%

Table 7.1: Examples of problem’s constraints.

platform so as to propose another target to it, and then using jammer to deviate it on

the seduction-mode chaff. Distraction must be used when a threat has not locked yet

so as to propose another target before it locks. Chaffs effectiveness is unknown a priori

and probably depends on the azimuth of threats. Furthermore, the jammer may be

coordinated with chaff to increase their effectiveness. However, if a chaff is addressing

a threat or a group of threats, it may affect the effectiveness of hardkills since a chaff

deceive threats as it disturb STIR’s illumination and targeting. Thus, we first learn

what are softkills effectiveness alone and then try to coordinate them with hardkills.

We now introduce the reflex planner. Later in this chapter, we compare an LRTDP

implementation with this reflex planner.
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Figure 7.1: Directions where chaff can be launched. NE = north east, NW = north

west, SE = south east, SW = south west.

7.2 Reflex Planner

The following sections describe the reflex planner (Besse et al., 2007) which has been

implemented in SADM.

7.2.1 Softkill Basic Behavior

As chaffs effectiveness is unknown a priori, their probability distributions of deceiv-

ing a threat is evaluated with Monte-Carlo simulations and estimations as proposed in

Sutton and Barto’s Sutton and Barto (1998) book. These distributions models what

will be the softkill agent behavior. As a consequence, the softkill agent will have to

choose an action to do among sixteen possible action (4 directions × 2 modes × Jam-

mer or not) each time it should engage a threat. We first estimate the effectiveness of

one chaff against one threat and obtain probability distributions of deceiving a threat

depending on action chosen and azimuth of the threat.

For instance, the effectiveness of a chaff launched in seduction mode is shown in

Figure 7.2 and the same located chaff launched in coordination with a jammer is also
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shown in Figure 7.2. This figure shows the percentage of sofkilled threats (i.e. threats

countered with softkill weapons) depending on their incoming azimuth. Results are ob-

tained by simulating apparition of threats uniformly around the ship and evaluating the

percentage of deceiving each chaff have depending on azimuth and jammer utilization.

The loss of efficiency by using the jammer from 320o to 360o is due to the fact that

jammer may attract the threat on the own platform instead of deceiving it if it is used

too longer. This fact must also be taken into account in the coordinating agent, which

merges the hardkill and softkill plans.
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Figure 7.2: North-East (30o ) Seduction Chaff. Light gray curve shows the coordination

with the Jammer, the black line shows no coordination with the Jammer

7.2.2 Developed Policies

Once we obtained the probability distributions, some theoretical policies could be

developed. In fact, these policies are the product of a conjunction of measurements

following a given criteria. For instance, the policy given by Figure 7.3 ensures the best

chaff to launch to counter a threat and what is the gain if we synchronize it with the

jammer. Samples of the chaff and the mode to choose and its probability of success to

counter the threat is given in table 7.2.
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Figure 7.3: Policy % effectiveness based on results of learning. Light gray curve shows

the chaff-only policy, the black line shows improvement made by synchronizing the

Jammer with the chaff.

% No Jammer % Jammer Action

0 73 87 NE Seduction

10 93 6 NW Seduction

20 99 1 NW Seduction

. . . . . . . . . . . .

120 0 73 SW Seduction

130 0 34 SW Seduction

140 32 38 SE Seduction

150 57 72 SE Seduction

160 85 94 SE Seduction

. . . . . . . . . . . .

220 32 38 SW Seduction

230 0 34 SE Seduction

240 0 73 SE Seduction

. . . . . . . . . . . .

340 99 1 NE Seduction

350 93 6 NE Seduction

Table 7.2: Policy % effectiveness based on results of learning. Chaff to launch is

indicated in the Action column.



CHAPTER 7. IMPLEMENTATION IN SADM 129

7.2.3 Policies Evaluation

Allowing the ship to maneuver could, in fact, improve softkill defense in some cases but

could also decrease it in other cases. Thus, we decided to improve ship’s survivability

by allocating blind-zone incoming threats to a reflex hardkill agent. This aspect of

coordination will be explained in Section 7.3.3.

Results of such implementation show that chaff are symmetrically effective in first

approximation but there are some variance due to uncertainty and complexity of models

that simulator employs. Thus, an empirical policy for a pure reflex softkill agent is

shown in Figure 7.4. This policy will be used by the reflex and LRTDP planners.
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Figure 7.4: Policy % effectiveness based on empirical tests.

7.3 Softkill & Hardkill Planning

As stated before, we have two agents, one for the softkill system and the other for the

hardkill system. When they face one or several threats, these two specific agents plan

the use of weapon resources of the ship for countering the threats. Planning weapon

resources in this context means allocating and scheduling the deployment of the ship’s

weapon resources against threats with a precise order on the intervention time.
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7.3.1 Softkill Reflex Planning Agent

Generally, reflex planning uses very low-level reasoning techniques for a simple

response to a situation to give a very short response time. This is very important in

our context because defending ship brings a very hard and usually very short time

constraint.

Based on policies described in previous section, the softkill agent first wait until

one threat begin to search after the ship (Line 3 of algorithm 7.1). Then, the softkill

agent uses known threats to regroup them (Line 6) in order to turn the ship to minimize

number of threats in blind zones (Line 10). Finally, it apply policy given by methodology

explained above.

Algorithm 7.1 The softkill agent algorithm.

1: Inputs: Threats: Threats list;

2: Policy: Policy given in section 7.2.3;

3: Wait until threats going to lock.

4: {Threats pre-treatment:}

5: Threats ← EvaluateAndOrder(Threats)

6: ThreatGroups ← Group(Threats)

7: ThreatGroups ← Evaluate(ThreatGroups)

8: {Maneuvers:}

9: {Choose direction which maximize softkill effectiveness:}

10: newHeading ← BestDirection(ThreatGroups)

11: SetShipSpeed(maxSpeed knots)

12: SetShipHeading(newHeading)

13: wait for currentHeading = newHeading

14: SetShipSpeed(baseSpeed)

15: {Launch chaff according to given policy}

16: LaunchChaff(Policy)

7.3.2 Hardkill Reflex Planning Agent

To construct a reflex plan, the hardkill agent maintains a list of threats coming on

the ship. This list is sorted according to some threat evaluation (i. e., the list is sorted

from the most to the least dangerous threat). Then, it applies some predefined rules

for allocating the resources. These predefined rules are given by algorithm 7.2. The

algorithm first evaluates the threat rankings in Line 4, based on the closest point of

approach and time of flight to the own platform. Then we assign a SAM and the Gun
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to the most dangerous threat and only the SAM to the second most dangerous threat.

Algorithm 7.2 The hardkill agent algorithm.

1: Inputs: Threats: Threats list;

2: Wait until threats into range.

3: {Threats pre-treatment:}

4: Threats ← Evaluate(Threats)

5: 1stThreat ← First(Threats)

6: 2ndThreat ← Second(Threats)

7: {allocating a SAM and a gun to the most dangerous threat}

8: AssignSAM(1stThreat)

9: AssignGUN(1stThreat)

10: {allocating a SAM to the second most dangerous threat}

11: AssignSAM(2ndThreat)

12: {allocating the CIWS to all threats that enter into the CIWS’s range.}

13: AssignCIWS(AllThreatsInRange)

Though these rules are simple, they allow using all available resources in an efficient

way. Unfortunately, the available resources are only allocated to the two most dangerous

threats, and all others in the list (if any) are not considered in the reflex plan. In the

case where a kill assessment indicates that a hostile threat has been destroyed, the

resources that have been allocated to this threat become available for the next most

dangerous threat in the list.

7.3.3 Hardkill & Softkill Coordination

There are many ways to coordinate the hardkill and softkill agents. For instance,

Blodgett et al. (2002) used a Central Coordinator to merge plans after receiving them

from each agent. If there are some negative interactions between the planned actions,

it will modify the plans to eliminate these negative interactions, or if not possible, it

will try to reduce their effects.

Another option is to use a direct method where agents communicate with each

other and try to coordinate their actions. In this case, communications can be used for

commitments and convention as suggested by Jennings (1994), and they can be used

for synchronizing plans and conflict solving.

A third method might be a kind of whiteboard (a common data space) in which

the hardkill and softkill agents will construct a coordinated plan by some successive

refinements. In this case, the coordination will be implicit because they will work on

the same plan. Similar to this is the mediator, which in fact plays the role of a Central
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Coordinator with the possibility of communication and negotiation with softkill and

hardkill agents on synchronizing plans and conflicts resolution. In fact, many different

communications ways could be used with their own advantages and drawbacks.

However, methods which use communication and negotiation are time consuming

and therefore could decrease the quality of the produced plan. For this reason, we

investigated for a centralized coordinator that does not use communication between

agents. In fact, we choose the softkill agent to coordinate actions due to its large

perception and the fact that we want to prioritize it higher than the hardkill one. As

a result the softkill agent will avoid the hardkill agent to engage the same threats

as the softkill one does. To do so, the softkill agent just decreases their priority in

hardkill agent’s priority list. The corresponding algorithm is given by algorithm 7.3.

In Lines 6 to 12, The algorithm finds the group of threat with the best seduction

probability. Then, in Lines 13 to 17, the priority of each threats is modified according

to the softkill seduction probability. Finally, in Lines 19 and 20, the softkill and hardkill

plan is generated. In particular, the hardkill agent will consider threats engaged by the

softkill one once it has destroyed all threats with a better priority. We now describe a

deliberative hardkill planner based on heuristic search, introduced in Chapter 5.

Algorithm 7.3 The hardkill-softkill coordination algorithm.

1: Inputs: Threats: Threats list;

2: Wait until threats into range.

3: {Threats pre-treatment:}

4: Threats ← Evaluate(Threats)

5: {in a same manner as hardkill agent does}

6: for all group g ∈ Threats do

7: {get the best threat group to engage}

8: Pg ← SeductionGroupProba(g, Policy)

9: if Pg > SeductionGroupProba(BestGroup, Policy) then

10: BestGroup← g

11: end if

12: end for

13: for all Threat i ∈ BestGroup do

14: {decrease their priority according to the probability to deceive it}

15: Pi ← SeductionProba(Threat, Policy)

16: Priorityi ← Priorityi × Pi

17: end for

18: {Plan Softkill and Hardkill}

19: Softkill planning on BestGroup

20: Hardkill planning on Threats updated
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7.4 LRTDP Approach Implemented in (SADM)

Labelled Real-Time Dynamic Programming (LRTDP) (Bonet and Geffner, 2003b),

which is detailed in Section 5.1.2 has been implemented in SADM. To implement our

LRTDP algorithm, we modify the MDP model, defined in Section 4.7.2, as follows:

• A state s ∈ S is a tuple 〈tstart, tend, Ta, alloc〉. In particular, tstart is the start

time of the state; tend is the end time of the state; alloc is a set alloc ∈ A(s) of

allocations which are already in execution at time tstart. In this implementation,

a goal state is reached when no threats remain in the environment.

• An allocation consists of using a resource from a start time tstart to an end time

tend, with the intention of countering at least one threat. An action may contains

multiple allocation. The possible actions are limited by the amount that may

be used on a task at a particular time. Furthermore, tend is an estimated upper

bound of the real ending time since the action durations are uncertain.

• Each threat has the same weight, since each threat cause the same damage to the

ship.

• A reward of 1×wta is given when the state of a task (sta) is in an achieved state,

and 0 in all other cases.

• The discount factor is set to 1.

The implementation of LRTDP in SADM has been made for hardkill weapons. The

algorithm is launched each time a new threat is perceived in the environment. The

softkill weapons are considered as an input to LRTDP. We chose to separate the softkill

and hardkill planners for LRTDP because a softkill action is usually efficient in only one

range for each threat; reengagements are not effective for the softkill weapons. Since

the reengagements are not effective, a dynamic programming algorithm as LRTDP is

useless for softkill weapons. As previously explained in the context of coordination, the

softkill reflex planner is first performed on the current threats and consequently it is

considered as an input to the LRTDP hardkill planner agent. Indeed, the softkill action

simply diminishes the reward we can obtain to counter a threat in respect with the kill

probability of the softkill action. For example, if the reward to counter a threat is 1 and

the softkill action has an 83% probability to counter this threat, the LRTDP planner

considers now the reward of this threat as 0.172.

As in any heuristic search algorithm, a heuristic is needed for newly generated states.

We used Equation 5.1 to generate this upper bound heuristic at the start of the planning

process.

2reward - softkill action probability = new reward considered by the harkill agent (1 - 0.83 = 0.17).
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When the time is introduced into our problem, matching task states to the global

state is not obvious (Besse et al., 2006). Indeed, the start time and end time of a global

state are generally different of the start time and end time of the specific state of each

task. This is caused by the fact that the end time of a state s is obtained according to

the time of the first action to end when considering all tasks. On the other hand, the

end time of a task state sta is obtained with the first action to end, when considering

the current task ta only. As described by Besse et al. (2006), to match correctly a task

state sta within a global state s, we find a task state for which:

tstartta 6 tstart < tendta
(7.1)

where tstartta and tendta
are, respectively the starting and ending time of sta. Also, sta

has to match the other characteristics of the task ta in the global state s.

Here, the best matching state for a task is found. It is a matching state since the

start time of sta is less or equal than the start time of the global state s. Indeed, the

possible actions in state sta are equal or greater than the possible actions in state s for

task ta. Also, it is the best matching state because one and only one state for a task

can satisfy Equation 7.1 and it is the state which has the start time the nearest possible

of tstart, but for which tstartta is not greater than tstart.

7.4.1 Issues and Limitations

LRTDP is guaranteed to return the optimal policy, given the current model and

sufficient planning time. Since the algorithm is optimal, we have to consider all reach-

able states from the initial state, following the optimal policy. The number of possible

reachable states is highly related to the number of possible hardkill engagements that

can be made on each threat. For example, if we are in a state s0 with five threats that

can be reengaged four times each with both STIRs; we can do three actions on each

threat that are:

• Engage the threat with a SAM using STIR A.

• Engage the threat with a SAM using STIR B.

• Do nothing on this threat.

In this case, there are 3 × 5 = 15 possible single actions that can be executed

in s0. However, to obtain all possible joint actions A(s0), we have to determine all

possible combinations of these 15 possible actions. Since we have two STIRs, there

are at most 152 possible actions to execute in s0. Nevertheless, there are actions that

are not permitted, for example, assigning a threat with both STIRs. However, these

actions are a little subset of A(s0).
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All the actions in the set transit into different states, which can also have the same

number of possible actions. In this example, there are A(s0)
d = 1524

= 2 562 890 625

possible states, where d is the length of the horizon. If d is only two per threats,

the number of states is only 50 625 which is significantly lower. As our approach

suffers greatly in complexity if the number of reengagements for each threat is high, the

characteristics of the threats have to permit a limited number of possible reengagements.

7.5 SADM’s Configuration

In SADM, we have used a scenario where the threats appears at any degree from

the ship. All threats appear in the first 10 seconds of the scenario at a range varying

from 25 km to 35 km. The speed of the threats is between 600 m/s and 650 m/s to

permit only 2 to 3 possible reengagements per threats.

7.6 Experiments for SADM

The LRTDP approach can be compared with the reflex planner. In particular, the

only difference is for the hardkill weapons, which are scheduled first with simple rules

for the reflex planner and then it uses a LRTDP algorithm. We will be able to compare

the planning time and the survivability of the ship for both planners.

The 95% error (Error) probability of the ship survivability (PS) form Mitchell

(1997) is:

Error = ±
√

(PS ∗ (1− PS))/nbTrials (7.2)

, where nbTrials is the number of Monte-Carlo trials. For our tests, we did 500 Monte-

Carlo simulations per number of threats for each approach.

Figures 7.5 and 7.6 detail the platform survival rate for the LRTDP, the reflex

(Besse et al., 2007) and Tabu search (Blodgett et al., 2003) approaches for hardkill and

hardkill + softkill planners. In this context, 500 Monte-Carlo trials were made for each

result’s point. In general, the platform survival rate is higher for LRTDP than for the

reflex approach for a number of scenarios varying between 1 to 4 threats. On the other

hand, the survivability is higher for the reflex planner than for LRTDP for scenarios of

5 to 8 threats. The Tabu search approach is generally less effective than the two other

approaches.

Table 7.3 details the average waiting time in seconds for the LRTDP and Tabu search

approaches for hardkill weapons. To measure this, we sum whenever an allocation is

finished, the subtraction of the kill time that was forecasted with the actual kill time.

These waiting times are due to the uncertainty of the allocation durations. The length
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Figure 7.5: Own platform survival for hardkill with the LRTDP, reflex and Tabu search

approaches.

 0

 20

 40

 60

 80

 100

 1  2  3  4  5  6  7  8

P
la

tfo
rm

 s
ur

vi
va

l (
%

)

Number of tasks

LRTDP
Reflex

Figure 7.6: Own platform survival for hardkill and softkill with the LRTDP and reflex

approaches.
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Table 7.3: Average waiting time in seconds for the LRTDP and Tabu search approaches

for hardkill weapons (standard deviation).

|Ta| LRTDP Tabu search

1 1.027 (0.19) 2.23 (0.40)

2 1.81 (0.44) 4.40 (0.74)

3 2.79 (0.57) 6.24 (1.12)

4 3.02 (0.62) 7.67 (1.48)

5 3.64 (0.91) 8.73 (1.75)

6 4.50 (2.20) 9.35 (1.93)

7 5.11 (1.67) 9.80 (1.93)

8 7.35 (3.33) 9.96 (2.00)

Table 7.4: Average planning time for the LRTDP approach for hardkill weapons.
|Ta| Average planning time in seconds (standard deviation)

1 0.0016 (0.005)

2 0.0079 (0.0083)

3 0.04 (0.013)

4 0.17 (0.269)

5 1.39 (0.79)

6 2.13 (0.72)

7 4.87 (4.14)

8 8.45 (7.38)

of a scenario is in average 59.06 seconds, thus, these waiting times are not negligible.

In particular, we can observe that the higher the number of threats a scenario has,

the higher the waiting time is. This is because when there are many threats, the ship

executes many allocations, which each has a waiting time.

Table 7.4 describes the average planning time in seconds for the LRTDP approach

for hardkill weapons. Such a planning time is not prohibitive, even for a scenario with

8 threats. However, if the threats travel 2 times slower, the planning time augments

drastically. For example, it takes 8 minutes to plan for a scenario with 6 threats in this

case, instead of 2.13 seconds when the characteristics of the threats permit only 2 or 3

reengagements.

7.7 Discussion on Experiments using SADM

LRTDP has a certain number of advantages and disadvantages. In brief, the main

advantage of LRTDP is that its policy is optimal. Its main disadvantage is that it
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Figure 7.7: Example with 3 threats.

requires a precise model of the environment. This model also usually requires a large

amount of states.

7.7.1 What it did well

LRTDP is able to converge to the optimal solution, if its model of the environment

is accurate. Conversely, a greedy approach like the reflex one does not guarantee to

converge to the optimal solution. To show that, let’s consider the example in Figure

7.7 with three threats, which travel at the same speed. ta1 is the nearest threat and

can be engaged by a SAM with STIR A or B. ta2 is the second nearest threat and can

also be engaged by a SAM with STIR A or B. Finally, ta3 is the furthest threat and it

can only be engaged by a SAM with STIR B.

In this example, a reflex approach may allocate a SAM on ta1 with STIR A and a

SAM on ta2 with STIR B. However, LRTDP would allocate a SAM on ta1 with STIR B

and a SAM on ta2 with STIR A. Indeed, since ta1 is nearer to the own platform, STIR

B will become available earlier to counter threat ta3, hence maximizing the possible

reengagements on ta3.

Let’s consider another example where the minimal interceptions distance for the

SAM is 2.2 km. There are three threats traveling at the same distance as our SAMs.

The first threat ta1 is at a range of 4.5 km and can be engaged with STIR A. The

second threat ta1 is at a range of 7 km and can be engaged with STIRs A and B. The

third threat ta3 is at a range of 9.5 km and can be engaged with STIRs A and B. Thus,

under these characteristics, ta3 can be engaged two times with a SAM. In this case, the
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reflex planner engages a SAM on ta1 with STIR A and a SAM on ta2 with STIR B.

Afterwards, we can engage a SAM on ta3 with STIR A. Thus, a SAM can be engaged

one time on each treat with the reflex planner.

The LRTDP planner would generate a better solution. Precisely, it can engage

a SAM on ta1 with STIR A and engage a SAM on ta3 with STIR B. When ta1 is

intercepted, ta2 has advanced of 2.2 km and is now at a range of 4.8 km. LRTDP can

launch a SAM on ta2 with STIR A. If the SAM on ta3 missed it, is now at a range of

4.75 km. It can launch another SAM on ta3 with STIR B. In this case, it can launch

one SAM on ta1 and ta2. On the other hand, ta3 can be engaged two times, which is a

better policy than the one generated by a reflex planner.

In Figures 7.5 and 7.6, the LRTDP planner has a higher survivability for scenarios

of 1 to 4 threats, which demonstrate the better solutions generated by LRTDP. As

discussed in the next section, the LRTDP approach has a lower survivability than the

reflex approach for scenarios of 5 to 8 threats is due to the very high waiting time which

occurs in these scenarios.

7.7.2 What it did poorly

LRTDP has two major disadvantages. First of all, since it models the entire reach-

able state space, the planning time can be very prohibitive, as explained in Section

7.4.1. For this reason, the parameters of the scenarios should not cause a high number

of possible reengagements for each threat. Also, as demonstrated in Table 7.3, the

LRTDP approach is hindered by its high waiting time due to uncertain allocation du-

rations. A reflex approach which does not have to wait when an allocation is finished

is advantaged in this case. Indeed, LRTDP models the environment and reasons about

it. If its model is not accurate, it will reason about fallacious information. Sometimes,

it is better to have no model such as with the reflex approach than a fallacious model,

as it is the case for LRTDP, with the uncertain action durations. We think the rea-

son why the LRTDP approach has a lower platform survival than the reflex approach

for scenarios of 5 to 8 threats in Figures 7.5 and 7.6 is due to the very high waiting

times which occur in these scenarios. Indeed, a waiting time of 3.64 to 7.34 seconds is

very important in scenarios that length 59.06 seconds in average. In our opinion, these

waiting times cause the reflex planner to be more effective than LRTDP.

7.7.3 LRTDP Improvements

The most important improvement needed for LRTDP is to consider effectively un-

certain action durations. A possible approach would be to discretize the action duration

in many possible durations with an associated probability as done by Ramsauer (2002).
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However, doing this would augment exponentially the branching factor from each state.

Another approach which might be adopted is the one that represents each task as an

independent random variable with a known mean and variance Beck and Wilson (2007).

They propose and investigate a number of techniques for solving such problem based

on combination of Monte Carlo simulation, solutions to the associated deterministic

problem, and either constraint programming or tabu search. Their empirical result

demonstrate that a combination of the use of the associated deterministic problem and

Monte Carlo simulation results in algorithms that scale best both in terms of problem

size and uncertainty. These techniques should be investigated possibly in our future

work to model the uncertain duration of our resource and tasks.

Another solution would be to generate a policy not only when a new threat is

perceived, but also at each kill assessment. In this case, LRTDP would act at each

events from the environment, like the reflex approach. However, these new planning

points would also augment the planning time.

Dealing with uncertain action durations seems an active research area where it could

be interesting determining a viable solution for our problem.

7.7.4 Discussion on Target Problem

In Section 4.3.2, we have described the specific problem we are interested in to solve

using SADM. The implemented softkill planner described in Section 7.3.1 tried to model

the engagements with respect with the target problem and with the kill probabilities

learned in SADM. However, the movement has not been considered in this work because

of the continuous action space it involves. Still, we could discretize the action space for

the movement like we did in previous works (Blodgett et al., 2002).

7.8 Conclusion

This chapter described the implementation of a reflex and LRTDP approaches in the

SADM simulator. The reflex approach, which is based on simple rules, is more efficient

than the LRTDP approach on scenario with 5 to 8 threats. However, the LRTDP

approach is better in scenarios with 1 to 4 threats. We conjectured that the reason why

the LRTDP planner is worse than the reflex planner in scenario with many threats is due

to the high waiting time induced by the uncertain duration of the actions. Considering

effectively these high waiting time for LRTDP is for future work. We now conclude

this thesis with a summary of the main contributions. Also, possible future works are

proposed.
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Conclusion

This thesis considers the problem of resource allocation for domains where the

preferences of agents for the resources are induced by stochastic-planning problems

(modeled as Markov decision processes). We demonstrated that, by considering the

specific structure of our problem, and by defining tight initial bounds for resource

allocation the planning complexity is greatly reduced.

In this chapter, we conclude with a summary of the main contributions of the work,

along with a discussion of its limitations and an overview of future directions and open

problems.

8.1 Summary of the Contributions

Conceptually, this dissertation can be broken into two parts. The first part, consisting

of Chapters 5 and 7, discusses policy-optimization and resource allocation problems

using real-time heuristic search. The second part, which corresponds to Chapter 6

deals with models involving exploiting the task creation, and resource interactions of

the problem, and problem structure. The overarching goal of these two parts is on

developing efficient planning and resource-allocation algorithms by exploiting problem

structure due to the specific characteristics of our problem. Below, we briefly summarize

the main results and contributions of this work, with an emphasis on the connections

between the parts.

• Exploiting the task creation, and resource interactions of the problem

This contributions consists of two decomposition techniques which exploits the

characteristic of the problem. Firstly, the acyclic decomposition in Section 6.2

exploits the task creation by current tasks in the problem to generate an acyclic

graph of cyclic components. This graph is solved from the leafs to the root

and permits a considerable reduction in planning time. Furthermore, an agent
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may manage each resource type as in the MTAMDP approach. In this case,

positive and negative interactions among resources of distinct agents as well as

simultaneous actions are coordinated near-optimally through a central agent. We

also presented the extensibility of the acyclic decomposition and merged it to the

MTAMDP approach to further reduce the planning time.

• policy-optimization and resource allocation problems using real-time

heuristic search. A possible type of resource allocation problem is where the

resources are already shared among the agents, but the actions made by an agent

may influence the reward obtained by at least another agent. In this case, Q-

decomposition can be employed to generate an optimal policy since each agent

can compute a Q-value from its perspective. Then an arbitrator sums the Q-value

of each agents for each possible joint actions. If an action is not possible to execute

due to resource constraint, this global action is discarded. This Q-decomposition

model is used in the context of real-time heuristic search and permits to reduce

significantly the complexity to formulate an optimal policy for the agents.

However, when the resources are available to all agents, no Q-decomposition is

possible. In this case, tight bounds for real-time dynamic programming permits

to focuss the search on relevant states, and to prune the actions in a state which

their upper bound Q-values are lower than the lower bound of the state.

8.2 Future Works

This dissertation may be extended in many ways to solve more effectively our re-

source allocation problem. Below, we briefly outline a few of the possible directions of

future work and discuss preliminary ideas on pursuing these topics.

8.2.1 Partially Observable Environment

As discussed in Section 4.3.2, the environment of a ship, which has to counter anti-

ship missile using its resources is partially observable. Indeed, the sensors of the ship

perceive an imperfect model of the environment. In this case, a Partially Observable

Markov Decision Process (POMDP) (Smallwood and Sondik, 1973) is a convenient tool

to model such a problem. A drawback of POMDPs is its huge complexity, but researches

in this field are very active.

An interesting algorithm which could be extended with the work of this thesis is

Heuristic Search Value Iteration (HSVI) (Smith and Simmons, 2004). HSVI draws on

prior approaches that combine heuristic search and value iteration (Washington (1997);
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Geffner and Bonet (1999)), and a multitude of algorithms that employ a piecewise lin-

ear convex value function representation and gradient backups (Cassandra et al. (1997);

Pineau et al. (2003)). HSVI keeps track of upper and lower bounds on the value func-

tion. When HSVI is used to solve a resource allocation problem like ours, the initial

bounds could be initialized with a POMDP version of the upper and lower bounds

defined in Section 5.2. In addition, the acyclic decomposition and the Q-decomposition

could be applied in a partially observable environment also.

Furthermore, Real-Time Belief State Search (RTBSS) (Paquet et al., 2005) is an

on-line POMDP algorithm which finds effective solutions in a very short amount of

time. It has been shown that RTBSS could be improved when initialized with the

solution of an off-line approach, such as HSVI and PBVI by Pineau et al. (2003). Again,

our tight bounds, the acyclic decomposition, and Q-decomposition could speed up the

convergence of RTBSS, which could enable a deeper search and a better policy.

8.2.2 Decentralized Problem

This thesis considered the resource allocation of a single ship which has to execute

many tasks (counter many threats) with its limited resources. In these days, cur-

rent war scenarios usually involves multiple combat platforms which should coordinate

themselves to generate a joint policy. Such a decentralize problem has the effect that

every actor perceive a separate part of the environment and the global view of the

environment is not so obvious.

Such problems, can be modeled as a Multi-agent Markov Decision Process(MMDP)

proposed by Boutilier (1999), the Partially Observable Identical Payoff Stochastic

Game (POIPSG) proposed by Peshkin et al. (2000), the multi-agent decision process

proposed by Xuan and Lesser (2002), the Communicative Multiagent Team Decision

Problem (COM-MTDP) proposed by Pynadath and Tambe (2002), the Decentralized

Markov Decision Process (DEC-POMDP and DEC-MDP) proposed by Bernstein et al.

(2002), and the DEC-POMDP with Communication (DEC-POMDP-COM) proposed

by Goldman and Zilberstein (2003).

The MMDP model is based on full observability of the global state by each agent.

However, multiple combat platforms introduce situations in which each agent has a

different partial view of the global state and together they can uniquely determine it.

This observation model is characteristic of a DEC-MDP, DEC-POMDP and the Xuan-

Lesser framework. The other models differ in that they assume a more general form of

observations where there is joint partial observability.

Another interesting approach is the Multi-Agent A* (MAA∗) approach for solving

a DEC-POMDP from Szer et al. (2005). All these approaches should be examined

to determine if the algorithms proposed in this thesis could extend these works and
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diminish the complexity to formulate a policy in such a complex environment.

8.2.3 Structured Methods for Consumable Resources

The state space in this thesis represents all combination of possible available con-

sumable resources, which is very complex. However, in Section 6.1, if the resources

are already shared among the agents, but the actions made by an agent may influ-

ence the reward obtained by at least another agent, we can use Q-decomposition which

diminishes greatly the complexity associated to the consumable resources.

A similar framework to Q-decomposition are Progressive Reasoning Units

(Mouaddib and Zilberstein, 1998) (PRUs). A (PRU consists of decomposing a global

task in many sub tasks to be executed in sequences. This permits to decompose the

set of resource to consider. For example, the problem describes in Section 4.3.2 can be

modeled efficiently using a PRU. Indeed, when the threat is searching for the ship or

when it is locked requires different resource types, that can be model using PRUs.

8.2.4 Continuous State and Action Spaces

As pointed out in Section 7.7.2 uncertain action durations introduce a continuous

action time. In this case, when the action duration is approximated, the resulting policy

introduces waiting time between actions. We described possible two possible ways to

deal with this problem in Section 7.7.3, which are to discretize the action duration in

many possible durations and to introduce more planning points.

Other actions are continuous, such as the movement, which is depicted in Figure

7.4. The number of possible movement actions are infinite. Again one way to tackle this

is to discretize the action space or to deal with the continuous action space. However

dealing with the continuous action space would augment drastically the computing

time. Dealing with continuous state and action spaces for our real-time problem seems

a very attractive research area.
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Appendix A

AND/OR Graphs

The most general state-space search problem considered in the AI literature is

AND/OR graph search (Martelli and Montanari (1978); Nilsson (1980)). An AND/OR

graph can be defined as a hypergraph which has k-connectors that connect a state to a

set of k successor states. Figure A.1 relates the concept of OR and AND nodes to the

concept of a hyperarc or k -connectors. Figure A.1 (a) shows an OR node with two arcs

leaving it, one for action a1 and one for action a2. Each arc leads to an AND node with

two successor OR nodes, one for each possible successor state. (By convention, a square

denotes an OR node and a circle denotes an AND node. In the terminology of decision

analysis, a square corresponds to a choice node and a circle corresponds to a chance

node.). Figure A.1 (b) shows a state, indicated by a circle, with two 2-connectors leav-

ing it, one for action a1 and one for action a2. Each 2-connectors leads to two possible

successor states. The representation on the right, using state nodes and k -connectors,

is equivalent to the representation on the left, which uses OR and AND nodes.

A k -connectors can be interpreted in different ways. In problem-reduction search,

it is interpreted as the transformation of a problem into k subproblems. We use k -

connector to consider the problem of planning under uncertainty in which it is inter-

preted as an action with an uncertain outcome. The action transforms a state into one of

k possible successor states, with a probability attached to each successor. In AND/OR

graph search, a solution takes the form of an acyclic subgraph called a solution graph,

which is defined as follows:

• The start state belongs to a solution graph.

• For every nongoal state in a solution graph, exactly one outgoing k -connector

(corresponding to an action) is part of the solution graph and each of its successor

states also belongs to the solution graph.

• Every directed path in the solution graph terminates at a goal state.
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a1

a2

a1

a2

(a) (b)

Figure A.1: (a) uses OR and AND nodes; and (b) uses state nodes and k-connectors.

AND/OR graphs are the basic tool used by the AO∗ and LAO∗ algorithms.
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