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Résumé

La reconnaissance des intentions de l’utilisateur est l’un des problèmes les plus difficiles
dans la conception des systèmes de dialogues. Ces intentions sont généralement codés
en termes d’actes de dialogue, où un rôle fonctionnel est attribué à chaque énoncé d’une
conversation. L’annotation manuelle des actes de dialogue est généralement coûteuse
et prends du temps, il y a donc un grand intérêt à plutôt annoter automatiquement des
corpus de dialogue.

Dans ce mémoire, nous proposons une approche non paramétrique bayésienne pour
la classification automatique des actes de dialogue. Nous utilisons les mélanges par
processus de Dirichlet (DPMM), dans lesquels chacune des composantes est déter-
minée par une distribution de Dirichlet-multinomial. Deux nouvelles approches pour
l’estimation des hyperparamètres dans ces distributions sont introduites. Les résultats
de l’application de ce modèle au corpus DIHANA montre que la DPMM peut récupérer
le nombre réel d’étiquettes en haute précision.



Abstract

Recognition of user intentions is one of the most challenging problems in the design
of dialogue systems. These intentions are usually coded in terms of Dialogue Acts
(Following Austin’s work on speech act theory), where a functional role is assigned
to each utterance of a conversation. Manual annotation of dialogue acts is both time
consuming and expensive, therefore there is a huge interest in systems which are able
to automatically annotate dialogue corpora.

In this thesis, we propose a nonparametric Bayesian approach for the automatic classifi-
cation of dialogue acts. We make use of the Dirichlet Process Mixture Model (DPMM),
within which each of the components is governed by a Dirichlet-Multinomial distri-
bution. Two novel approaches for hyperparameter estimation in these distributions
are also introduced. Results of the application of this model to the DIHANA corpus
shows that the DPMM can successfully recover the true number of DA labels with high
precision.
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Chapter 1

Introduction

Language is the hallmark of the human species. Several animals are capable of produc-
ing sounds to communicate with other members of their community; however, there is
a vast difference between the chirps of a sparrow or the howls of a wolf, and a human
reciting verses of Hafez in front of a large audience. Natural selection has endowed
us with the exquisite gift of speech, where we can use words and structures to convey
complex meanings in social communications. By language we inform others of our in-
tentions, partake in conversations, discuss the most intricate philosophical questions,
and even scrutinize the nature of language itself.

So the study of language may give us a clue as to the understanding of human intel-
ligence, and thus help us advance our knowledge on how to establish intelligence into
non-human agents. Despite the staggering growth in many other areas of science, there
seems to be not so much consensus as to why this peculiar human trait has evolved
throughout history. Some like Dawkins [1982] believe that language evolved for manip-
ulation and deception of other people. Others such as Bickerton [1992] and Chomsky
[2002] think of language more as an adaptation which allowed reflection and self-talking
rather than communication with others. Some even propose that language evolved as a
direct substitute for grooming [Dunbar, 1998] or as a courtship device to demonstrate
the fitness of our brains [Miller, 2000]. Be that as it may, it still seems perplexing that
such a great faculty with all its variations has evolved when simpler and more efficient
coding could have served the very same purpose.

Perhaps the most compelling explanation for the emergence of language is the most
intuitive one, that the human language faculty has evolved for communication in a
knowledge-using, socially interdependent lifestyle [Pinker et al., 1992; Pinker, 2003].
The enormous benefits that lingual communication has brought about leaves no doubt
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that after its evolution, this trait would not perish away. Language made us capable
of explaining what we had in our minds and to expect others to cooperate with us in
order to achieve higher altruistic goals.

Human communication by means of language is done through conversation or dialogue.
Whether it is for participating in business meetings, ordering food from a restaurant, or
asking for fares and timetables at a train station, we all indulge in some sort of dialogue
with other people to achieve a certain goal. So any non-human agent attempting to
display intelligence in its interaction with human users must be capable of maintaining
a conversation in a coherent manner.

These non-human intelligent agents, also called conversational agents, live in the con-
strained world of language where the only possible observations are utterances, and
the only actions available to them are to generate utterances. Even though the agents
designed so far are way too limited in their functionality, still any attempt to design a
conversational agent relies on an analysis of how humans interact among themselves,
and for this we have to know what specific properties does this social activity posses.

The most apparent characteristic of any lingual conversation is that it necessarily in-
volves multiple agents. It is impossible to converse by speaking when there is no other
party listening to what is being said. This joint activity is built up of consecutive turns,
where each participant says something when it is his or her turn to speak. In the case
where there are only two people conversing, this means that first, speaker A starts
saying something, then speaker B replies by saying something relevant to what A said,
then the turn is passed to speaker A, and so on and so forth.

Even though it might be taken for granted, but communication (either by dialogue or
by any other means) can only occur when both agents are able to recognize what the
other person is saying. Consider the following example from Allen [1987] where Jack
and Sue are trying to work on a communication scheme where Jack leaves the window
of his room open when it is safe for Sue to visit him. This means that by seeing the open
window, Sue can come visit him and they have been able to successfully communicate
with one another. Now, assume that it is a hot summer day and Jack decides to open
the window, not as a communication signal, but as to let fresh air into the room. Sue
sees the open window and decides it is safe to visit. In this case, Jack and Sue have
failed to communicate with one another because Sue has misinterpreted the signal and
has not been able to recognize the true intention of Jack. On the other hand, suppose
Jack opens the window and says to himself that although it is a hot summer day, he
wants Sue to come by. Now if Sue interprets the open window as an act of cooling the
room, she has been unable to understand the intention of Jack and once again, they
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have failed to communicate with each other.

It thus follows that communication can occur only when both agents are able to under-
stand the true intention of one another. In the domain of linguistic conversations, these
intentions are captured using units called speech acts, or in more functional terms, dia-
logue acts. In the next section, we will briefly explain these linguistic units and explain
their application in dialogue analysis.

1.1 Dialogue Acts

Suppose a traveller goes to a railway station information booth and asks ’I want to know
the fare for the train leaving at 7:45 going to Barcelona’. This simple utterance can be
easily understood by a human agent and he can provide the costumer with appropriate
information regarding train fares. However, if we are designing a conversational agent
to do this task, our agent needs to know many things in advance before being able to
respond to the costumer. It must be able to recognize the names, numbers, or any other
relevant information in the utterance, perhaps know the context to some extent, and
generate an utterance in response to the user. But first and foremost, in order to make
an apt decision it needs to realize the intention of the user by understanding what the
utterance is really about. These higher level information units are called Dialogue Acts.

In more precise terms, dialogue acts are linguistic units that represent the intention
hidden in each utterance of a dialogue by assigning a functional role to that utterance.
For example, the utterance above may be given a simple DA tag such as <Question>,
or a more insightful label such as <Question-Fare-Departure Hour>, based on what
annotation scheme has been used. However, recognition of these units is one of the
main challenges in the development of conversational agents.

To begin with, a single utterance may be used to formulate various intentions. For
example, a simple utterance such as ’Okay’ could serve as an acknowledgement, an
attention grabber, an acceptance, a yes answer or even as a conversation starter. Second
of all, as we mentioned earlier, different annotation schemes yield different annotation
tags. Some schemes like the SWBD-DAMSL are very general, such that they can
be easily used for various contexts, whereas others like DIHANA are precise but task
limited.

But perhaps the most intricate of all revolves around how our conversational agent
should recognize these tags. It doesn’t seem feasible to inject these annotations manu-
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ally because utterances will definitely vary in real life situations and it is impossible to
annotate all utterances beforehand. So we must resort to some automatic dialogue act
classification techniques to overcome this difficulty.

To date, several methods have been applied to the automatic recognition of dialogue
acts, among which include the use of sequence n-gram models [Nagata & Morimoto,
1994; Reithinger & Maier, 1995], application of hidden Markov models [Stolcke et al.,
2000], the naive Bayes classifier [Grau et al., 2004] and the multilayer perceptron [San-
chis & Castro, 2002; Levin et al., 2003]. While some of these approaches, or combi-
nations of them, have proven to yield successful results, but they seem to be limited
in the sense that they are all parametric; i.e. they all require the number of Dialogue
acts to be determined a priori. This information is almost never available, because
conversational agents never know what situations they might encounter during a dia-
logue. This limitation asks for more flexible methods that can learn model parameters
by themselves.

1.2 Nonparametric Bayesian Methods

Parametric models are bound to a finite number of parameters that are not allowed to
grow or shrink over time. Examples of these include document clustering or dialogue
act classification when the number of components are fixed by the model. To surpass
this functional limitation, nonparametric Bayesian methods allow models that are not
limited to finite parametrizations and ’let the data speak’ themselves. This means
that, for example, while we may start off with a specific number of DA labels, these
components may increase or decrease in number during the course of the execution.

To make this possible, our models are no longer limited to parametric distributions;
they are based on stochastic processes. In simple terms, a stochastic process is an
indexed collection of random variables where the index set is allowed to be infinite [Blei
et al., 2010]. Among these structures, Dirichlet processes, and infinite mixture models
based on it, are one of the most important nonparametric structures used in machine
learning applications. We can think of the Dirichlet process as the infinite dimensional
counterpart of the general Dirichlet distribution. Using these models, our parameters
can now range over infinite dimensional spaces and allow for structures with open ended
cardinality.



Chapter 1. Introduction 5

1.3 Main Contributions

The primary contribution of this thesis is to offer a nonparametric Bayesian approach
to the problem of automatic dialogue act recognition in DIHANA; a corpus composed
of 900 dialogues about railway information such as trip timetables and prices. As
mentioned earlier, previous attempts to the problem of automatic classification were
all grounded on parametric models, which meant that the number of dialogue acts
had to be determined when constructing the model. By using nonparametric Bayesian
models, and the Dirichlet process in particular, we achieve more flexible models where
the data are let to speak for themselves. In other words, our model finds the number
of DA’s necessary for capturing all information in the corpus by itself, and assigns each
utterance of the corpus to one of these DA labels.

The model proposed here is an infinite mixture model, called the Dirichlet Process mix-
ture model, in which the number of components (dialogue acts) grow as more data are
observed. Each of these (potentially) infinite number of components is governed by a
Dirichlet-Multinomial distribution, and utterances are assigned to components based
on the word counts in each of them. The second main contribution of this thesis, which
is fully explained in Chapter 4, is to provide two novel approaches to hyperparameter
estimation in the Dirichlet-Multinomial distribution by addressing an important imple-
mentation shortcoming in the previous estimation techniques. The methods are later
used in our experiments for updating the parameters of each DA component.

1.4 Thesis Outline

This thesis is organized as follows. In Chapter 2, we provide a background on some of the
most important mathematical concepts that will be used in the later chapters, such as
the basics of measure theory, Bayesian statistics and exponential families, and the most
prominent methods for approximate inference in the Bayesian framework. Chapter 3
then proceeds with an in depth analysis of nonparametric Bayesian methods and in
particular, the Dirichlet process. Among the various representations of this process,
attention is focused on the Chinese Restaurant Process and the important properties
that stem from this representational metaphor. We present our novel hyperparameter
estimation techniques for the Dirichlet-Multinomial distribution in Chapter 4, along
with other estimation methods for infinite dimensional mixture models. In Chapter 5,
we give an overview of previous attempts to automatic dialogue act recognition, and
propose the nonparametric model along with results of applying the method on the
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DIHANA corpus. Finally, Chapter 6 concludes with a summary of our contributions
and a consideration for future research.



Chapter 2

Background

In this background chapter, we review some of basic mathematical and statistical method-
ologies upon which our work is based. We begin by giving a basic introduction to measure
theory and σ-algebras, and then describe basics of Bayesian inference and families of
probability distributions, respectively. The last section of this chapter will be devoted to
approximate methods for Bayesian inference which provide alternatives to exact infer-
ence in cases where it is impossible to provide analytic solutions to this type of infer-
ence.

2.1 Basics of Measure Theory

Measure theory [Billingsley, 1995; Athreya & Lahiri, 2006] is the study of measures,
which intuitively aims at generalizing the notion of length to any suitable subset. In
other words, what we are looking for is a concept of length that can include as many
subsets of R as possible. This length µ(A), that we assign to a bounded subset A of R,
should have the following properties:

I. Length: The value µ(A) assigned to an open or closed interval is its length, i.e. if
A = (a, b) or A = [a, b], then µ(A) = b− a.

II. Translation invariance: If c ∈ R, then µ(A+ c) = µ(A) where µ(A+ c) denotes
the set {x + c|x ∈ A}, i.e. if A = (a, b), then A + c = (a + c, b + c) and by the
first property we have µ(A+ c) = (b+ c)− (a+ c) = b− a = µ(A).

III. Countable additivity: For any countable collection of bounded subsets {An}∞n=1
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0 ∞
Figure 2.1: A measure is a function that assigns real numbers to subsets of a σ-algebra

of R, we have:
µ(
∞⋃
n=1

An) ≤
∞∑
n=1

µ(An)

and we have equality when the sets are pairwise disjoint. For instance, suppose
n = 2 and the sets are defined as A1 = (a, b) and A2 = (b − ε, c) where ε ≥ 0.
Then the right hand side of the inequality c−a+ ε would be greater than the left
side which is c− a.

IV. Monotonicity: If A ⊂ B, then µ(A) ≤ µ(B), i.e. if A = (a, b) and B = (a, c)
where c ≥ b, then it is clear that A ∈ B and we have µ(A) = b−a ≤ µ(B) = c−a.

Unfortunately, it seems that it is not possible to have a µ defined over all subsets of
real numbers satisfying properties I-IV (see e.g. Franks [2009] or Loève [1977]). Instead
with a little modification, we can define a function that covers not all subsets, but a
set of subsets in R. This collection is called σ-algebra and is defined as follows:

Definition 2.1. A subset Σ of the power set of a set Θ is a σ-algebra if it has the
following properties:

I. Σ is not empty;

II. Σ is closed under complements; in other words If E is in Σ, then its (X − E) is
also in Σ;

III. Σ is closed under countable unions: A1, A2, . . . ,∈ Σ then ∪Ai ∈ Σ.

All elements A ∈ Σ of the σ-algebra are called measurable sets, and the ordered
pair (Θ,Σ) where Θ is a set and Σ is a σ-algebra over Θ, is called a measurable space.
To make this clearer, consider the set Θ = {a, b, c, d}. One possible sigma algebra
on Θ would be Σ = {∅, {a, b}, {c, d}, {a, b, c, d}} which satisfies the conditions I-III of
Definition 2.1.
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The function that assigns real numbers to subsets of a σ-algebra is called a measure.
In technical terms, a measure is defined as follows:

Definition 2.2. A function µ : Σ → [0,∞] over the measure space (Θ,Σ) is called a
measure if it has the following three properties:

I. µ(A) ≥ 0 for all A ∈ Σ,

II. µ(∅) = 0,

III. µ(∪(Ai)) = ∑(µ(Ai)).

Various measures have been defined for different contexts. A counting measure [Banue-
los, 2003], for example, is defined by µ(A) = number of elements in A. Perhaps the
most important measure function is the probability measure. A probability measure is
simply a measure with total measure equal to one (i.e. µ(Θ) = 1). In a similar way,
a probability space is a measure space over probability measures and is denoted by the
triple (Θ,Σ, P ) where Θ is the measure space, Σ is a σ algebra, and P is a probability
measure.

2.1.1 Probability Spaces and Random Variables

A probability space [Loève, 1977; Billingsley, 1995] is a mathematical construct that
models an experiment consisting of states that occur randomly. It is denoted by a
triple (Θ,Σ, P ) and consists of the following parts:

I. Sample space Θ which is the set of all possible outcomes of an experiment.

II. σ-algebra Σ which is a collection of events. Basically, it is the set of outcomes
that we are interested in and must be a subset of Θ.

III. Probability measure P which assigns a real number to the events. Since a
probability measure has total measure equal to one, then according to property
III in Definition 2.2, any probability measure must be a real number between
zero and one. This number is referred to as a probability assignment, or simply a
probability.

A random variable is simply a function that assigns a number to every outcome of an
experiment. The following definition gives a formal account of random variables in real
observation spaces.
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Definition 2.3. The function X : Θ → R is a real-valued random variable over the
probability space (Θ,Σ, P ) if:

{ω : X(ω) ≤ r} ∈ Σ ∀r ∈ R (2.1)

Random variables can be any numerical quantity of interest in an experiment. As an
example, when tossing a perfect coin we can describe the number of heads appearing
as a random variable X given as follows:

X =

 1 if heads,
0 if tails.

2.1.2 Probability Distribution and Density Functions

Let (Θ,Σ, P ) be a probability space and X be a random variable over the sample
space Θ. Consider a σ-algebra Σ defined by {X ≤ x}. This means that we are only
interested in the outcomes that are less than or equal to a specific number x.

The elements of Θ that are contained in the event {X ≤ x} change as the number x
changes. Therefore, the number (probability) that the probability measure P ({X ≤ x})
assigns to the event {X ≤ x} depends on the value of x. This number is denoted by F (x)
and is called the cumulative distribution function or simply the distribution function of
the random variable X.

The derivative of a distribution function dF (x)/dx is denoted by f(x) and called the
probability density function. This function describes the relative likelihood for a contin-
uous random variable to occur at a given point in the space. For instance, the uniform
distribution on (0, 1) is defined as:

F (x) =


0 x ≤ 0
x 0 ≤ x ≤ 1
1 x > 1

The probability density function of the uniform distribution will then be f(x) = 1
for x ∈ (0, 1) and 0 otherwise. This means that all intervals with the same length
on (0, 1) will be equally probable.
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In the case of discrete random variables, the density function f(x) will have the form of
a collection of positive discrete masses. In such cases, f(x) represents the probability
that the random variable is exactly equal to some specific value and is usually called
the probability mass function.

2.1.3 Expectation and Variance

Expected value is one of the fundamental concepts in probability. It is formally defined
as follows:

Definition 2.4. If X is a random variable defined over a probability space (Θ,Σ, P ),
then the expected value of X, denoted by E(X) is defined as:

E(X) =
∫

Θ
XdP (2.2)

Therefore, for real-valued random variables the expected value becomes:

E(X) =
∫ +∞

−∞
xf(x)dx (2.3)

The variance of a random variable, denoted by V ar(X), is the deviation of that variable
from its expected value. In other words:

V ar(X) = E((X − E(X))2) = E(X2)− (E(X))2 (2.4)

The basics that we introduced in this section lay the mathematical foundation of the
rest of the topics that we will discuss. In the next section, we will overview one of the
prominent interpretations of probability measures which assumes that our subjective
uncertainties can be expressed in terms of probabilities. This simple expression forms
the backbone of Bayesian statistics.

2.2 Bayesian Statistics

The Bayesian interpretation of probability can be seen as an extension of logic to
describe degrees of belief [Wallach, 2008]. Any set of beliefs can be mapped onto prob-
abilities as long as they satisfy Cox’s axioms of consistency (see Cox [1946]). Bayesian
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probability enables us to quantify all kinds of uncertainty in our statistical inferences
when we are concerned with drawing conclusions, from observed data, about quantities
that are not observed. This approach is, for instance, extremely useful in modeling spo-
ken and text data where the true nature of the underlying topics, syntactic structure
and dialogue acts are unknown.

Before proceeding, we should clarify some of the basic notions that we will be dealing
with in any statistical evaluation. As normal with many disciplines of science, we will
describe the system that governs a random variable using a mathematical model, i.e.
a set of equations describing the underlying distributions from which we assume our
dataset is sampled. For example, tossing a standard coin is normally described by
a binomial distribution1. In statistical modelling, we should distinguish between two
types of unobserved data that we are trying to draw conclusions. First, potentially
observable quantities, such as the next flipping of a coin; and second, unobservable
quantities that govern the underlying model which leads to the observed data. In
the same example, the probability of observing ’heads’ is the unobserved quantity or
parameter when the underlying model has a binomial distribution. The parameters of
the model are generally denoted by the vector θ2.

2.2.1 Bayes’ theorem

Bayesian statistical inferences about the unobserved data or the parameter vector θ are
made using Bayes’ theorem [Gelman et al., 2004; Bolstad, 2010]. This rule which un-
derlies most modern AI systems for probabilistic inference, is explained in the following
theorem:

Theorem 2.1. Let (Θ,Σ, P ) be a probability space and let A,B ∈ Σ be such that
P (A) > 0 and P (B) > 0. Then:

P (A|B)P (B) = P (B|A)P (A) (2.5)

where P (A|B) is the conditional probability of the event A given event B and defined as:

P (A|B) = P (A,B)
P (B) = P (A ∩B)

P (B) (2.6)

1The binomial distribution is a special case of the multinomial distribution where there are only
two possible outcomes. See Section 2.3.2 for more details.

2Throughout this thesis bold lower-case letters are meant to be vectors, bold upper-case letters are
matrices, and italic letters refer to scalar values.
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Suppose we have n observations from a statistical experiment (for example n trials of
a coin flip) and denote them by the vector y = (y1, . . . , yn). For the purpose of sta-
tistical inference, these observations are often assumed to be independent and identi-
cally distributed (i.i.d)[Gelman et al., 2004]; their joint probability p(y1, . . . , yn) is equal
to ∏n

i=1 p(yi) and the underlying distribution function which has generated them is the
same1. Supposing that the model is governed by the parameter vector θ = (θ1, . . . , θp),
we can generalize Theorem 2.1 and write the theorem in its unscaled form as:

p(θ|y) ∝ p(θ)p(y|θ) (2.7)

The reason for writing Bayes’ theorem in proportional form (i.e. using ∝) is that in
most cases, as we will further explain in Section 2.4, the exact computation of the
posterior is computationally infeasible due to the intractability of the scaling factor
for large dimensions. Therefore, many approximate methods rely just on its shape,
as described in Eq. (2.7), to get as close as possible to the true value of the posterior
distribution.

Under the Bayesian approach, we assume that while we do not know the true value of
the parameter vector θ we can place probabilities on the various possible θ ∈ Σ. The
density function p(θ) in Eq. (2.7) returns this prior belief in the parameter vector.

The observed data y1, . . . , yn also convey information about the true value of the param-
eter through the likelihood function p(y1, . . . , yn|θ1, . . . , θp). This function gives relative
weights to every possible parameter value that comes from the observations. Bayes’
theorem allows us to combine these two sources of information (our prior and the like-
lihood of data) into the posterior density, which formulates how to consistently update
our belief in the parameter vector after observing the data.

It must be noted that Eq. (2.7) does not give the exact posterior p(θ|y), but it does give
its shape. In order to find the actual posterior density, we must divide it by a scaling
factor so that it integrates to 1. According to Bayes’ rule, the scaling factor p(y), which
is called the marginal distribution [Gelman et al., 2004] of y, is equal to:

p(y) =
∫

Θ
p(θ)p(y|θ)dθ (2.8)

In this case, Bayes’ theorem as described in Eq. (2.7) can be written in its non propor-
1In practical applications, this condition may not be easily met. A sufficient and more realistic

assumption would be to consider them as exchangeable. De Finetti [1931] showed that exchangeable
random variables share the main properties of i.i.d variables. See Aldous [1985] or Fox [2009] for more
explanation.
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tional form as follows:

p(θ|y) = p(θ)p(y|θ)
p(y) = p(θ)p(y|θ)∫

Θ p(θ)p(y|θ)dθ (2.9)

2.2.2 Prediction

One of the main goals in Bayesian statistical analysis is to make predictions about an
unknown observable based on the data that we have already observed. Suppose we
have made n observations y = (y1, . . . , yn) and we are interested in the probability
distribution of a future observation yn+1. This predictive distribution ([Aitchison &
Dunsmore, 1975; Bolstad, 2010; Gelman et al., 2004]) can be found by integrating the
parameter vector out of the joint posterior distribution:

p(yn+1|y1, . . . , yn) =
∫

Θ
p(yn+1,θ|y1, . . . , yn)dθ (2.10)

We can further simplify Eq. (2.10) by applying the following lemma which can be simply
obtained from the definition of conditional probability in Eq. (2.6):

Lemma 2.1. For any set of events A, B and C, we have:

p(A,B|C) = p(A|B,C)p(B|C) (2.11)

Now by applying Lemma 2.1 to Eq. (2.10) and then applying Bayes’ theorem in its

complete scaled form, i.e. p(θ|y) = p(θ)p(y|θ)
p(y) , it follows that:

p(yn+1|y1, . . . , yn) =
∫

Θ
p(yn+1|y1, . . . , yn,θ)p(θ|y1, . . . , yn)dθ (2.12)

=
∫

Θ p(yn+1|θ)p(y1, . . . , yn|θ)p(θ)dθ
p(y) (2.13)

where p(y) is the marginal distribution of y as defined in Eq. (2.8). The last equation
follows because in our model, yn+1 and y are conditionally independent given the pa-
rameter vector θ, in other words:

p(yn+1|y1, . . . , yn,θ) = p(yn+1|θ) (2.14)

.
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2.2.3 Parameter Estimation

There are several methods available to estimate the parameters of a statistical model
governing a set of observable outcomes. Here we will overview some of the most impor-
tant approaches which are used in the next chapters.

In Maximum Likelihood Estimation (MLE) [Alpaydin, 2004; Robert & Casella, 2004],
we are interested in finding the parameter value θ̂MLE that makes our observations
the most likely to be drawn. Normally, the calculation is simplified by maximizing the
logarithm of the likelihood, the log likelihood function:

θ̂MLE = argmax
θ
{log p(y|θ)} = argmax

θ
{log p(y1, . . . , yn|θ1, . . . , θp)} (2.15)

Because the logarithm function is monotonically increasing, the logarithm of a function
has the same maxima as the function itself. There are two main motivations for using
the log likelihood function; First, under the i.i.d assumption, the right hand side of
Eq. (2.15) becomes ∑n

i=1 log p(yi|θ) which is more convenient to deal with, since the
derivative of a sum of terms is easier to compute than the derivative of a product
(this comes in handy when we are trying to find the extrema of a function). Second,
many of the common probability distributions belong to the exponential family, and
the logarithm of such distributions are much easier to differentiate than the original
function.

The main problem with MLE is that it generally has a poor predictive performance
since it highly overfits the available observations [Bishop, 2006]. For instance, suppose
we flip a coin three times and observe heads each time. A classical maximum likelihood
estimate of the probability of landing heads would give 1, which means that all future
tosses will land heads.

Now assume that we also have a prior distribution over our parameter vector θ. The
method of Maximum A posteriori Estimation (MAP) [Alpaydin, 2004] then tries to find
the parameter vector θ̂MAP that maximizes the posterior density as defined in Eq. (2.7).
Again, using the logarithm of the posterior is a more convenient choice:

θ̂MAP = argmax
θ
{log p(θ|y)} = argmax

θ
{log p(y|θ) + log p(θ)− log p(y)}

= argmax
θ
{log p(y|θ) + log p(θ)} (2.16)

where the last equation follows from the fact that p(y) is constant for all values of θ,
and thus does not affect the argmax function. When we have no prior information
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about the parameters, then the posterior will have the same form as the likelihood and
our MAP estimate will be equal to the MLE estimate of θ.

The main issue with MLE and MAP is that they are point estimators; they use the
whole dataset to calculate the value of a single variable, and for this reason they are
not good representatives for the Bayesian framework. However, in Bayesian estimation,
the data are summarized by the use of distributions instead of single points, and thus
they try to estimate the mean value of the distribution along with credible intervals.

Whereas most of the difficulties related to MLE and MAP are optimization problems,
like solving for the maxima or dealing with local extrema, Bayesian estimation normally
results in integration problems [Robert & Casella, 2004]. Bayes’ estimator [Alpaydin,
2004] is defined as the expected value of the posterior density:

θ̂Bayes = E(θ|y) =
∫

Θ
θp(θ|y)dθ (2.17)

The motivation behind taking the expected value is that the best estimate of a random
variable is its mean. In other words, the mean square error is minimal if we chose the
mean vector as our estimate for θ.

For means of mathematical simplification, a conjugate prior (as explained in Sec-
tion 2.3.1) is usually chosen for the prior distribution. However, in some situations
the choice of a conjugate prior may not be realistic and can imply restrictions on the
modeling of the prior information. In such cases numerical sampling methods based on
Monte Carlo integration techniques, which will be further explained in the Section 2.4,
should be used to evaluate the integral of Eq. 2.17.

2.3 Exponential Families

Exponential families [Hazewinkel, 2002; Clark & Thayer, 2004; Bishop, 2006] are a broad
class of probability distributions which have many important properties in common.
Many of the most widely used distributions, including the normal, gamma, Dirichlet,
multinomial and Poisson belong to this class of distributions.

Definition 2.5. A parametrized class of distributions F is a k parameter exponential
family if each member of the family has a density of the form:

p(y|θ) = h(y)g(θ) exp(η(θ) · t(y)) (2.18)
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where η(θ) = (η1(θ), η2(θ), . . . , ηk(θ)) is the natural parameter of the distribution,
t(y) = (t1(y), t2(y), . . . , tk(y)) the sufficient statistic, and h(y) and g(θ) are some
functions of y and θ, respectively1.

Note that the function g(θ) is automatically determined once the other functions have
been chosen. We can interpret g(θ) as the normalization factor that ensures the prob-
ability density integrates to 1:

g(θ) =
(∫

h(y) exp(η(θ) · t(y))dy
)−1

(2.19)

A sufficient statistic [Fisher, 1922; Hazewinkel, 2002] is a measure such that "no other
statistic2 which can be calculated from the same sample provides any additional infor-
mation as to the value of the parameter"[Fisher, 1922]. In other words:

p(y|t(y),θ) = p(y|t(y)) (2.20)

To see why t(y) is the sufficient statistic for the exponential family, consider a set of i.i.d.
observations Y = (y1,y2, . . . ,yn), according to which we are trying to find the MLE
of our parameter vector θ. The likelihood function with respect to the parameter θ is
given by:

p(Y|θ) =
(

n∏
i=1

h(yi)
)
g(θ)n exp

{
η(θ) ·

n∑
i=1

t(yi)
}

(2.21)

The maximum value for θ is obtained by setting the gradient of log p(Y|θ) in Eq. (2.21)
to zero, with respect to θ:

∇g(θ̂)
g(θ̂)

+∇η(θ̂) ·
∑n
i=1 t(yi)
n

= 0 (2.22)

Therefore the solution for the maximum likelihood estimator depends not on the indi-
vidual observations but only on

n∑
i=1

t(yi). In other words, all of the useful information

1In this section, we slightly deviate from the notations that we have been using so far. In order
to define the exponential family in its most general form, we have let each single observation to be a
vector of values. This means that y represents a single observation vector, and Y = (y1,y2, . . . ,yn)
will represent the set of observations.

2A statistic is a function of the sample data which assigns a single measure to the whole data set.
An example could be the arithmetic mean of the sample.
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that our dataset can provide to help us in estimating the parameter vector is captured
in the sufficient statistic of the distribution.

One of the main reasons why distributions from the exponential family are widely
common in statistics comes from a theorem proven independently by Pitman [1936],
Koopman [1936] and Darmois [1935] almost all at the same time. Essentially, what
they have shown is that except for a few families such as uniform distributions, it is
only in the distributions belonging to this family that the dimension of the sufficient
statistic is bounded even as the number of samples grows to infinity (see Jeffreys [1961]
or Barankin & Maitra [1963] for a more detailed explanation of the theorem). This is
an important property for the exponential family because it leads to efficient parameter
estimation methods.

2.3.1 Conjugate Distributions

In a Bayesian context, if the posterior distribution P (θ|y) has the same functional
form as the prior probability distribution P (θ), then the prior is called a conjugate
prior [Hazewinkel, 2002; Robert & Casella, 2004] for the likelihood P (y|θ). For reasons
related to the Pitman-Koopman-Darmois theorem, conjugate priors are only to be found
among distributions belonging to the exponential family (see e.g. Brown [1986]). For
such distributions, the conjugate prior takes the following form:

p(θ|ξ, ν) = f(ξ, ν)g(θ)ν exp(η(θ) · ξ) (2.23)

where ξ and ν are hyper-parameters that govern our prior distribution, and f(ξ, ν) is a
normalizing constant ensuring that our probability distribution integrates to 1. To see
that the posterior and prior actually have the same functional form, we should multiply
this prior by the likelihood function obtained in Eq. (2.21):

p(θ|Y, ξ, ν) = p(Y|θ)p(θ|ξ, ν) (2.24)

∝ g(θ)n+ν exp
{
η(θ) ·

(
ξ +

n∑
i=1

t(yi)
)}

(2.25)

Which confirms the conjugacy of the posterior with our prior. Essentially, conjugate
priors are chosen because of their flexibility; if the likelihood does not belong to the
exponential family, then no conjugate prior exists and we should resort to numerical
techniques for estimating the posterior [Huang, 2005].

In the following two sections, we will overview two of the most important members of
the exponential family which will be used extensively in the next chapters.
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2.3.2 Multinomial Distribution

Suppose we run n independent trials of an experiment such that in each trial, there
are K possible outcomes and the probability of observing each of these outcomes is
constant. A typical example is rolling a fair die 10 times, in which case there are 6
possible outcomes each occurring equally probable, i.e. p(1) = p(2) . . . = p(6) = 1

6 .
Under such circumstances, the experiment is governed by a multinomial distribution.

To be more formal, consider a sequence of independent and identical trials Y1, Y2, . . . , Yn
over the probability space (Θ,Σ, π)1 with sample space Θ = {1, . . . , K}. The probability
that our string of observations taking values y = (y1, y2, . . . , yn) is governed by a K-
dimensionalmultinomial distribution [Kotz et al., 2000; Balakrishnan & Nevzorov, 2003]
and is given by:

p(y1, y2, . . . , yn|π) = n!∏K
i=1 ni

K∏
i=1

πni
i ni =

n∑
j=1

δ(yj, i) (2.26)

where δ(x, y) is the Kronecker delta function; δ(x, y) = 1 if x = y, and zero otherwise.
In the special case where the sample space has exactly two members, the distribution
is also called a binomial distribution. It can be readily shown that the multinomial
distribution is a member of the exponential family. To see this, consider the multinomial
distribution for a single observation. For means of convenience, we will represent the
observation by a K-dimensional vector x = (x1, x2, . . . , xK) where xi equals 1 only if
the outcome of the trial is i, and zero otherwise. Therefore:

p(x|π) =
K∏
i=1

πxi
i = exp

{
K∑
i=1

xi log πi
}

(2.27)

Now comparing with Eq. (2.18), by replacing θ with π, we have:

h(x) = 1
g(π) = 1
η(π) = (log π1, log π2, . . . , log πK)
t(x) = x

(2.28)

Note that for multinomial observations, the conjugate prior must also belong to the
exponential family and, according to Eq. (2.23) along with the correspondences in
Eq. (2.28), it must be in the following form:

1In the following sections, we will denote the probability measure of the exponential family by the
vector π in order to avoid confusion.
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p(π|ξ) = f(ξ) exp(η(π) · ξ) = f(ξ) exp(
K∑
i=1

ξi(log πi)) (2.29)

In the next section, we will see that the Dirichlet distribution has a form similar to
Eq. (2.29). In multinomial distributions, the expected number of times that outcome i
will be observed over n trials is E(Yi) = nπi, and its variance is V ar(Yi) = nπi(1− πi).

2.3.3 Dirichlet Distribution

The K-dimensional Dirichlet distribution [Kotz et al., 2000; Balakrishnan & Nevzorov,
2003; Fox, 2009] is the conjugate prior for the K-dimensional multinomial distribution.
Let π = (π1, . . . , πK) be a point in the unit K − 1 simplex1. Any point in this unit
simplex satisfies the following properties:

0 ≤ πi and
K∑
i=1

πi = 1 (2.30)

The Dirichlet distribution for the point π is uniquely defined by a set of hyper-parameters
α = (α1, α2, . . . , αK) > 0 and can be written as follows:

p(π1, . . . , πK |α) = Γ(∑i(αi))∏
i(Γ(αi))

K∏
i=1

παi−1
i (2.31)

where Γ(x) is the standard Gamma function2. When there are only two parameters,
the distribution is also called a Beta distribution. By convention, the exponents of a
Dirichlet distribution are defined to equal αi−1 so that the expected value and variance
have the following simple forms [Sudderth, 2006]:

E(πi) = αi
s

V ar(πi) = E(πi)(1− E(πi))
s+ 1 (2.32)

The parameter s = ∑
i(αi) is typically referred to as the concentration parameter and

controls how concentrated the distribution is around its expected value [Huang, 2005].
Fig. 2.2 plots a Dirichlet distribution over the 2-simplex for various settings of the
concentration parameter.

1A simplex is a generalization of the notion of a triangle to arbitrary dimensions. The K − 1
simplex has K vertices.

2The Gamma function is an extension of the factorial function to complex numbers with real
parts. It is defined via the integral Γ(z) =

∫∞
0 tz−1e−tdt. For positive integers, the integral amounts

to Γ(n) = (n− 1)!
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Figure 2.2: The Dirichlet distribution for different settings of the concentration parame-
ter s. The plot on the right has a small s which results in a diffuse distribution, whereas
the centre plot has a large s and therefore concentrated around the mean. Figure from
Huang [2005]

The Dirichlet distribution is also a member of the exponential family. We can write
Eq. (2.31) as:

p(π|α) = Γ(∑i(αi))∏
i(Γ(αi))

exp
{

K∑
i=1

(αi − 1) log πi
}

(2.33)

Which corresponds with the standard formulation of members of the exponential family
defined in Eq. (2.18) (with θ = α) as:



h(π) = 1

g(α) = Γ(∑i(αi))∏
i(Γ(αi))

η(π) = (log π1, log π2, . . . , log πK)
t(α) = α− 1

(2.34)

Now, by setting ξ = α − 1 and f(ξ) = g(α) in Eq. (2.29), it can be readily seen that
the Dirichlet distribution is indeed a conjugate prior for the multinomial distribution.

Consider a set of observations y = (y1, y2, . . . , yn) from a multinomial distribution. The
conjugacy of the Dirichlet distribution implies that if we assume a Dirichlet prior for π;
i.e. π ∼ Dir(α1, . . . , αK), then the posterior distribution is also a Dirichlet whichhas a
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form similar to Eq. 2.25:

p(π|y1, . . . , yn,α) ∝

η(π)
(α− 1) +

n∑
j=1

t(yj)


∝ exp
{

K∑
i=1

(ni + αi − 1) log πi
}

∝ Dir(α1 + n1, . . . , αK + nK) (2.35)

where ti(yj) = δ(yj, i) and ni = ∑n
j=1 ti(yj). Therefore, we just need to update the vector

of sufficient statistics with the number of observations of category k, as in Eq. (2.35).

When analysing the Dirichlet process, which we will cover in full detail in Chapter 3, it is
useful to consider the aggregation and decimation properties of Dirichlet distributions.
We will consider these properties below without proof. For a more thorough discussion
and detailed proof, see Teh [2010] or Zhang [2008].

Theorem 2.2. (Agglomeration) If (π1, π2, . . . , πK) ∼ Dir(α1, α2, . . . , αK), then:

(π1 + π2, π3 . . . , πK) ∼ Dir(α1 + α2, α3, . . . , αK) (2.36)

and generally, if (I1, I2, . . . , Is) is a partition of {1, 2, . . . , K}, then:

(
∑
i∈I1

πi, . . . ,
∑
i∈Is

πi) ∼ Dir(
∑
i∈I1

αi, . . . ,
∑
i∈Is

αi) (2.37)

Theorem 2.3. (Decimation) If (π1, π2, . . . , πK) ∼ Dir(α1, α2, . . . , αK), and (τ1, τ2) ∼
Dir(α1β1, α1β2) where β1 + β2 = 1, then:

(π1τ1, π1τ2, π2, . . . , πK) ∼ Dir(α1β1, α1β2, α2, . . . , αK) (2.38)

As we will see later, Dirichlet distributions play an important role in natural language
modelling. The fact that they are the conjugate prior of the multinomial family makes
them a computationally feasible choice for incorporating prior knowledge into our sta-
tistical models.

In many problems that arise in Bayesian statistics, one of the main challenges is to
evaluate some sort of complex integral. Unfortunately, in most cases it is not possible to
analytically calculate this value and we have to resort to other methods for overcoming
this difficulty. The next section will introduce techniques that try to approximate the
problem instead of directly calculating the exact value.
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2.4 Approximate Inference

Two major classes of problems that arise in Bayesian inference are integration and
optimization problems. In this section, we discuss approximate solutions to the first
class; i.e. problems which involve evaluating the value of a complex integral in large
dimensional spaces. In Bayesian statistics, we frequently encounter such integrals when
dealing with posterior distributions. Examples include [Andrieu et al., 2003]:

• marginalisation; which involves calculating the marginal distribution of the obser-
vation vector by integrating the parameter vector out, as described in Eq. (2.8).

• expectation; from Eq. (2.2) we can find the expected value of a function f(X) by:

EP (f(X)) =
∫

Θ
f(X)dP =

∫
Θ
f(x)p(x)dx (2.39)

An example would be the computation of Bayes’ estimator as defined in Eq. (2.17).

• prediction; as formulated in Eq. (2.12), which aims to predict the value of unknown
observables based on what we have already observed.

Unfortunately, as we mentioned earlier, for many problems arising in practice exact
solution of these integrals is intractable and so we have to rely on some sort of approx-
imation. In general, approximation schemes fall into two broad categories, depending
on whether they resort to deterministic or stochastic approximations [Bishop, 2006].
We will overview these two broad frameworks in the following sections.

2.4.1 Deterministic Approximation

Consider Bayes’ theorem as described in Theorem 2.1. Normally, this theorem is ex-
pressed simply in the unscaled form posterior proportional to prior times likelihood, as
formulated in Eq. (2.7). However, as mentioned earlier, this formulation just gives the
shape of the posterior distribution, leaving us incapable of doing any inference about
the parameter vector θ. To find the actual posterior, we need to calculate the scaling
factor of Eq. (2.8) which may be very difficult to solve.

Deterministic approximation methods allow the posterior to be approached from a
completely different direction. These are based on analytical approximations to the
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posterior distribution, by assuming that they have some properties or have a specific
parametric form. As such, they transform the problem of integration to the task of
finding the solutions to a mathematical optimization problem. Here we will give a brief
overview of a family of deterministic approaches called variational Bayes techniques
which have been widely applied in practice. Some other deterministic approximation
methods, such as expectation propagation [Minka, 2001a,b], optimize different forms of
the same objective function that we will explain below.

Variational Inference

In general, variational methods [Wainwright & Jordan, 2008; Beal, 2003; MacKay, 2003]
aim to approximate a complex posterior distribution using a distribution that has a
simpler structure, typically referred to as a variational distribution. Suppose we adopt
a fully Bayesian approach in which our parameters are given prior distributions that
may belong to some parametric family. Therefore, since our original parameter vector is
now a vector of random variables, it is preferable to denote the set of all latent variables
and parameters by z.

The dissimilarity between the variational distribution q(z) and the posterior distribu-
tion p(z|y) is measured in terms of Kullback-Leibler (KL) divergence. Let (Θ,Σ) be
the σ-algebra over which our random variable z is defined. Then by definition, the KL
divergence between the variational distribution and the true posterior is the integral:

KL(q||p) =
∫

Θ
q(z) log q(z)

p(z|y)dz (2.40)

The KL-divergence has the property of being zero if the two distributions are equal,
and positive otherwise. The goal is then to find the distribution, or the settings of
parameters, that minimize the KL divergence with respect to q1. Now elaborating on

1It should be noted that the KL-divergence is not symmetric, i.e. KL(q||p) is not necessarily the
same as KL(p||q). This distinction is important because the distribution which minimizes the former
is not the same as the one which minimizes the latter (See e.g. Bishop [2006] or Winn [2004] for more
details)
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Eq. (2.40), replacing p(z|y) with its equivalent p(z,y)/p(y), we get:

KL(q||p) =
∫

Θ
q(z) log q(z)p(y)

p(z,y) dz

=
∫

Θ
q(z) log q(z)

p(z,y)dz +
∫

Θ
q(z) log p(y)dz

= −L(q) + log p(y)
∫

Θ
q(z)dz

= −L(q) + log p(y) (2.41)

and L(q) is by definition equal to:

L(q) =
∫

Θ
q(z) log p(z,y)dz−

∫
Θ
q(z) log q(z)dz (2.42)

The second term in Eq. (2.42) is the negative of the entropy of q, denoted by H(q),
which measures the amount of uncertainty in our variational distribution. Also, the
first term is the expectation of log p(z,y) with regard to q(z). This amounts to the
following simplified equality:

L(q) = Eq(z) [log p(z,y)] +H(q) (2.43)

Note that the last term in Eq. (2.41) can be ignored since it does not depend on q.
Hence, we should chose an appropriate form of distribution for q whose entropy as well
as its expectation in Eq. (2.43) are calculable. We can then maximise the value of L(q)
using standard optimization methods, so as to minimize the KL-divergence.

One common way to simplify the variational distribution is to choose q such that dis-
joint groups of variables are independent, also called factorized approximation [Winn,
2004; Bishop, 2006]. Properties of such factorized distributions, along with examples
of factorized variational approximation for members of the exponential family can be
found in MacKay [2003].

While variational methods scale well in large applications, they can never generate exact
results. Stochastic approximation methods, on the other hand, overcome this weakness
of variational approaches by tackling the problem from another point of view; instead
of trying to approximate the true posterior with another distribution, these methods
rely on numerical samples from the posterior. Even though stochastic approaches are
computationally demanding, but they have the advantage that with enough resources,
they can achieve any desired level of accuracy.
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2.4.2 Stochastic Approximation

Stochastic approximation techniques, also called Monte Carlo methods, aim to replace
the difficult numerical integration with the much easier task of drawing random samples.
Like many other mathematical breakthroughs, they were mainly developed by physi-
cists in their attempt to use random number generation to compute complex integrals
[Meteopolis & Ulam, 1949].

Monte Carlo Integration

To see the motivation behind Monte Carlo approaches, consider computing a complex
integral of the form: ∫

Θ
h(x)dx (2.44)

If we are able to decompose the function h(x) into the product of a function f(x) and
a probability density function p(x) over a σ-algebra Σ, then the integral turns into:∫

Θ
h(x)dx =

∫
Θ
f(x)p(x)dx = Ep(x) [f(x)] (2.45)

Now if we draw a large number of samples X = {x1, x2, . . . , xn} from the density p(x),
and calculate their empirical average by:

f̄n = 1
n

n∑
i=1

f(xi) (2.46)

then by the Strong Law of Large Numbers1, f̄n almost surely2 converges to the expec-
tation Ep(x) [f(x)]. Hence we can approximate the integral of Eq. (2.44) using random
numbers generated from the density function p(x).

This approach, also called Monte Carlo integration [Robert & Casella, 2004; Walsh,
2004], can be extensively used in Bayesian statistics since most calculations require
some sort of integration. For instance, the marginal distribution as defined in Eq. (2.8),
for a single parameter can be approximated by:

1The strong Law of Large Numbers states that the sample average converges almost surely to the
expected value. For a proof, see e.g. Loève [1977]

2Let (Θ,Σ, P ) be a probability space, then event e ∈ Σ happens almost surely if P (e) = 1
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p(y) =
∫

Θ
p(θ)p(y|θ)dθ ' 1

n

n∑
i=1

f(y|θi) (2.47)

where {θ1, θ2, . . . , θn} are samples drawn from our prior. However, we should still
address the problem of how to generate random samples from a given function.

Direct Sampling Algorithms

Many methods have been devised to draw random samples from a function. These
methods may often assume that we have access to random numbers from a uniform
distribution; i.e. we can generate random numbers between 0 and 1.

In Importance Sampling, we find a proper density q(x) which roughly estimates our
target distribution p(x) and could easily be sampled (The method can work with any
choice of the distribution q(x) as long as the support1 of p is a subset of the support
of q [Robert & Casella, 2004]). We then rewrite Eq. (2.45) as:

∫
Θ
f(x)p(x)dx =

∫
Θ
f(x)

(
p(x)
q(x)

)
q(x)dx ' 1

n

n∑
i=1

f(xi)
(
p(xi)
q(xi)

)
(2.48)

where the samples {x1, x2, . . . , xn} are drawn from the proposal distribution q(x).

Rejection Sampling is another direct sampling technique in which an easy-to-sample
envelope distribution is used for drawing our samples. However, the proposal distribu-
tion must satisfy:

p(x) ≤Mq(x) where M <∞ (2.49)

The algorithm then draws samples from the distribution q(x) and for each sample xi,

accepts it with probability r(xi) = p(xi)
Mq(xi)

and rejects it otherwise. This is done

by generating a random number u between 0 and 1 and verifying whether r(xi) is
greater/less than u in order to accept/reject the sample.

While there is a rich literature on direct sampling algorithms, we will not go into their
details any further. Interested readers may refer to Bolstad [2010] or Bishop [2006]
for more explanation. Nevertheless, it should be noted that it is often impossible to
find an easy to sample distribution which is also a good approximation at the same

1The support of a probability measure P is any σ-algebra Σ ∈ Θ for which P (Σ) = 1
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time [Andrieu et al., 2003]. In the next section, we introduce a very general and
powerful framework of stochastic approximation methods that overcome some of these
limitations.

Markov Chain Monte Carlo Algorithms

Markov Chain Monte Carlo [Andrieu et al., 2003; Chen et al., 2000; Robert & Casella,
2004] or MCMC is a general method based on drawing sequential samples from approx-
imate distributions and then correcting those draws to better approximate the target
distribution. The goal is to set up a chain such that the desired target distribution p is
its equilibrium distribution. Thus before discussing these algorithms, it is insightful to
give a few introductory comments on these so called Markov Chains in order to help
better understand the techniques presented later.

Markov Chains

Let zt denote the value of a vector of random variables at time t. Then the sequence of
such random variable vectors is called a Markov Chain [Lefebvre, 2006; Bishop, 2006]
if the following conditional independence property holds:

p(zt+1|z1, . . . , zt) = p(zt+1|zt) (2.50)

This equation is also called Markov’s property. It simply states that the future, given
the past and the present, is independent of the past and only depends on the present
[Lefebvre, 2006]. The Markov chain is basically a Stochastic Process, a concept that we
will deal with extensively in the next chapters.

We can specify a Markov chain by giving the probability of the starting vector p(z0)
along with the transition probabilities for subsequent states in the chain; i.e. p(zt+1|zt).
The chain is homogeneous if the transition probabilities remain invariant for all t.

A distribution p∗ is called invariant if:

p∗(z) =
∑
z′
p(z′|z)p∗(z′) (2.51)

It can be shown that subject to weak restrictions, a homogeneous Markov chain will con-
verge to an invariant distribution irrespective of the choice of initial distribution p(z0) [Neal,
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1993]. This property is called ergodicity and the invariant distribution is called the equi-
librium distribution.

Markov Chain Monte Carlo Sampling

MCMC works like rejection and importance sampling in the sense that the samples
are drawn from some distribution other than the original target distribution. But this
time, the distribution does not generate i.i.d samples; at each step, we record the current
state zt, and the proposal distribution q(zt+1|zt) draws the next sample based on the
the current state. Therefore, the sequence of samples {z1, z2, . . . zn} forms a Markov
chain.

The Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970] is the most
popular MCMC method. Given the current value of our sample, the Markov chain
accepts the new candidate value zt+1 as its new state with probability α equal to:

α = min
(

1, p(zt)q(zt+1|zt)
p(zt+1)q(zt|zt+1)

)
(2.52)

otherwise the chain remains in its current state. It can be shown (see, e.g. Robert &
Casella [2004]) that the target distribution p is indeed the equilibrium distribution of
the Markov chain defined above.

Gibbs Sampling

Gibbs sampling [Casella & George, 1992], probably the best known MCMC sampling
algorithm in Bayesian statistics, is a special case of the Metropolis-Hastings algorithm
where we always accept the value of the drawn sample. Suppose z = (z1, z2, . . . , zk) is
our parameter vector and our goal is to sample from the target distribution p(z). The
basic algorithm for this sampling scheme is given below:

An important feature of the Gibbs sampling algorithm is that all we need for our
simulation is the conditional probabilities shown in Algorithm 1. Therefore, even when
we are dealing with high dimensional spaces, all of our simulations are univariate [Robert
& Casella, 2004].

There are several variants to the standard Gibbs sampling algorithm which try to
improve its performance. In grouped Gibbs sampling, also called blocked Gibbs sampling,
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Algorithm 1: Gibbs sampling from the distribution p(z1, z2, . . . , zk)
1 Choose a starting point z0 = (z0

1, z0
2, . . . , z0

k) ;
2 Generate new samples as follows
3 for i+ 1 = 1 to T do
4 Sample zi+1

1 ∼ p(zi1|zi2, zi3, . . . , zik);
5 Sample zi+1

2 ∼ p(zi2|zi1, zi3, . . . , zik);

6
...

7 Sample zi+1
j ∼ p(zij |zi1, . . . , zij−1, z

i
j+1, . . . , z

i
k);

8
...

9 Sample zi+1
k ∼ p(zik|zi1, zi2, . . . , zik−1);

10 end

we form blocks of two or more variables together and then sample from their joint
distribution conditioned on all other variables. In some cases, we may even be able to
analytically marginalize over some of the variables, which is often referred to as collapsed
Gibbs sampling. See Chen et al. [2000] or Fox [2009] for a more detailed analysis of
different variants of Gibbs sampling, and MCMC techniques in general.

2.5 Summary

This chapter dealt with some of the most important mathematical concepts that will
be used throughout the thesis. We introduced the basics of parameter estimation and
prediction in the Bayesian framework, and reviewed the Dirichlet distribution which
is at the heart of all the concepts provided hereafter. We also covered inference in
Bayesian statistics which is of utmost importance when dealing with integrals that do
not have analytic solutions. Among these approaches, Gibbs sampling is perhaps the
most commonly used numerical method for approximating complex integrals. In the
next chapter, we will use these concepts and discuss nonparametric Bayesian methods,
which overcome the limitations of traditional parametric methods.
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Nonparametric Bayesian Analysis

Whereas parametric Bayesian methods comprise models with a finite (and often low)
number of parameters, nonparametric Bayesian approaches [Ferguson, 1973; Ghosh &
Ramamoorthi, 2003; Hjort et al., 2010] avoid the use of restricted functional forms and
thus are not limited to finite parametrizations. Strictly speaking, nonparametric here
does not mean a parameter-less model, rather a model in which the number of param-
eters grow as more data are observed. Nonparametric Bayesian models have gained
remarkable popularity in the field of machine learning because of their flexibility, espe-
cially in unsupervised learning. In the following sections, we describe one of the cor-
nerstone classes of Bayesian nonparametrics: the Dirichlet process, its representation,
and infinite dimensional mixture models which are based on it.

3.1 Stochastic Processes

Stochastic Processes [Billingsley, 1995; Lefebvre, 2006] are the building blocks that make
nonparametric Bayesian methods capable of dealing with infinite dimensional parameter
spaces. Loosely speaking, a stochastic process is a process that stochastically evolves
through time, in the sense that if we repeat the experiment under the same conditions,
the states that we move through are different than the states we observed during the
first run. A more formal definition is given below:

Definition 3.1. A stochastic process is a collection of random variables {X(t) : t ∈ T}
indexed by a set T (which can be though of as representing time) on a probability
space (Θ,Σ, P ).
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Figure 3.1: A stochastic process where people randomly enter a waiting line to get some
kind of service. Different colours show separate executions of the process

As an example, consider a waiting line of customers needing some kind of service where
new costumers can enter the line at discrete time units. Only one costumer can get
service in every time unit. Let s(k) denote the number of customers joining the line at
time k, then the size of the line at time k > 1, l(k), is given by

l(k) =

 l(k − 1) + s(k) if the line is empty,
l(k − 1) + s(k)− 1 otherwise.

where we subtract 1 in the second line to indicate the customer that is getting his service
at time k. This process satisfies the Markov property described in Eq. 2.50, because
the value of the next state depends only on the current state of the system, and is
therefore an instance of a Markov chain. Figure 3.1 shows three different executions of
the process, under the same conditions, where the arrival time of costumers is modelled
by a binomial distribution. As can be seen in the figure, each run returns a different
trajectory of state transitions.

Stochastic processes are often identified by the specific distribution they induce on
their finite statistics. For example, the Gaussian process [Rasmussen & Williams, 2006;
MacKay, 1998] provides a distribution over real valued functions such that any finite
subset of the range follows a multivariate Gaussian distribution. In the following sec-
tions, we describe the Dirichlet process due to their significant role in nonparametric
Bayesian modelling, and elaborate on some of their important properties.
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3.2 The Dirichlet Process

The Dirichlet process [Teh, 2010; Sudderth, 2006; Fox, 2009; Rodrigez, 2007] over a set S
is a stochastic process where every trajectory is a probability distribution over partitions
of S. We can think of the Dirichlet process as an extension of the Dirichlet distribution
to infinite dimensional spaces, such that every finite group of data, regardless of the
grouping mechanism, follows a Dirichlet distribution. In other words, for any finite mea-
surable partition1 {A1, A2, . . . Ak} of S, the probability vector (p(A1), p(A2), . . . , p(AK))
must be a k-dimensional Dirichlet distribution. However, this is a very delicate con-
dition and not so easy to satisfy. To see the reason, consider breaking one of the Ai’s
into a measurable partition {B1, B2, . . . , Bm}. Then by the agglomeration property of
Dirichlet distributions, as explained in Theorem 2.2, by adding up the Dirichlet param-
eters corresponding to the new partition, we must obtain the parameter of the orginial
Ai that we partitioned. It thus follows that in order to reach our goal, we must as-
sume the parameter set to be constrained by countable additivity. Therefore, a wise
choice would be to consider the parameters of the Dirichlet distribution to actually be
measures themselves because countable additivity is fused into what we expect from a
measure (see Definition 2.2).

It can be shown that the measure we are assuming for the parameter set could be
uniquely decomposed into a base probability measure H and a concentration parame-
ter γ. The whole argument can be summarized in the following Theorem:

Theorem 3.1. Let H be a probability distribution on a measurable space (Θ,Σ) and γ a
positive scalar. A probability measure G on Θ is called a Dirichlet process (DP) if every
finite measurable partition {A1, A2, . . . , Ak} on Θ follows a k-dimensional Dirichlet
distribution:

p((G(A1), G(A2), . . . , G(Ak))|γ,H) ∼ Dirichlet(γH(A1), γH(A2) . . . , γH(Ak)) (3.1)

For any base measure H and concentration parameter γ, there is a unique stochastic
process satisfying these conditions, which we denote by DP(γ,H).

This theorem was originally proved by Ferguson [1973] in his influential work, and later
by Sethuraman [1994] using a more constructive definition which we will describe in
Section 3.2.2.

1Let (Θ,Σ) be a measurable space, we call {A1, A2, . . . , Ak} a measurable partition of Θ if Ai ∈ Σ
for all i, Ai ∩Aj = ∅ for i 6= j and ∪ki=1Ai = Θ
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The parameters H and γ play significant roles in understanding the Dirichlet Process.
To see their relative importance, consider the expected value and variance of a DP for
any region A ∈ Θ by combining Eqs. (2.32) and (3.1):

E(G(A)) = H(A) V ar(G(A)) = H(A)(1−H(A))
γ + 1 (3.2)

Therefore, the base distribution H is the mean value of our DP and the concentration
parameter γ can be understood as an inverse variance which determines the average
deviation of the samples from the base measure.

Figure 3.2 shows how different settings of the concentration parameter affect the samples
drawn from a specific representation of the Dirichlet Process referred to as the stick-
breaking construction. We will thoroughly explain this representation in Section 3.2.2.
For the moment, just observe that as γ → ∞, the samples will be more concentrated
around the mean and G(A)→ H(A). However, care must be taken to avoid confusion
with G→ H since the former does not imply the latter. See Teh [2010] for more details.

3.2.1 Posterior Distribution

Assume that we draw a sample G from a Dirichlet process DP(γ,H). Since G is itself
a probability distribution, we can in turn draw samples from G. Let y = (y1, . . . , yn)
be the observations that we have made from the distribution G, then for any finite
measurable partition {A1, A2, . . . , Ak} on Θ, the posterior distribution of G given our
sequence of observations is given by:

p((G(A1), . . . , G(Ak))|y1, . . . , yn) ∼ Dirichlet(γH(A1) + n1, . . . , γH(Ak) + nk) (3.3)

where ni indicates how many of our observations fall into partition Ai. As shown
by Ferguson [1973], this result is due to the fact that every finite partition of the DP
follows a Dirichlet distribution and by the Dirichlet-Multinomial conjugacy described in
Eq. (2.35), we just have to update the parameters of our distribution with the number of
observations in each corresponding partition. See Sethuraman [1994] for an alternative
proof.

Note that with a little algebra, we can see that ni = ∑n
j=1 δθj

(Ai) where the fucntion δ
is the the Kronecker delta function explained in Section 2.3.2. Since Eq. (3.3) is true
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Figure 3.2: Samples of a Dirichlet Process for different concentration parameters with a
standard Gaussian base measure. The cumulative distribution function of the Gaussian
measure is drawn in black. As the value of γ increases, the results tend to be closer to
the baseline measure. In all cases, the samples are centred around the base distribution.
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Figure 3.3: The stick-breaking construction of the Dirichlet process. The construction
works by sequentially breaking a unit-length stick at random points obtained from
Beta(1, γ).

for every finite measurable partition, we can formalize this analysis and rewrite the
posterior as:

G|y1, . . . , yn, H, γ ∼ DP(γ + n,
γ

γ + n
H + 1

γ + n

n∑
i=1

δyi
) (3.4)

Equation (3.4) shows that the relative weight of the prior base distribution is propor-
tional to γ. Thus we can characterize γ as the strength associated with our prior H. As
we will see in Section 3.2.3, the base distribution H also plays a role in the predictive
distribution for the Dirichlet process.

We have already observed many characteristic of the Dirichlet process, but none of
these provide an approach to make predictions or to draw samples from the DP in
order to make inferences. In the following sections, we will introduce some important
representations of the Dirichlet process where each unveils significant properties of the
DP. Many of the applications of the Dirichlet process are based on these more intuitive
representations which also play an important role from a computational point of view.
Each representation is based on an important property of the DP that we will describe
in detail.

3.2.2 Discreteness and the Stick-Breaking Construction

The Stick-breaking construction [Sethuraman, 1994; Sudderth, 2006] is an important
representation of the Dirichlet process which stems from a very important characteristic
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of the DP. In the previous section, we showed that the posterior distribution for any
finite measurable partition is also a Dirichlet process with parameters updated as in
Eq. (3.4). Using this result in conjunction with Eq. (3.2), we see that for any A ∈ Θ:

E (G(A)|y1, . . . , yn, H, γ) = γ

γ + n
H + n

γ + n

∑n
i=1 δyi

n
(3.5)

Notice that distributions of the form pR + (1− p)S, where R and S are distributions,
represent the distribution that is a mixture of R and S with mixing proportions p
and 1−p respectively. Now if we take the limit as the number of observations approaches
infinity, we get [Fox, 2009; Sudderth, 2006]:

lim
n→∞

E (G(A)|y1, . . . , yn, H, γ) =
∞∑
k=1

πkδθ∗
k

(3.6)

where the vector θ∗ = (θ∗1, θ∗2, . . .) contains the distinct values among our set of obser-
vations, and the π = (π1, π2, . . .) represents their corresponding empirical frequency.
Bearing in mind that draws from the DP tend to concentrate around their mean, based
on Eq. (3.6) it is natural to think of the sample distributions to be discrete probability
measures. The following theorem gives a formal account of this result, along with a
straightforward construction of the Dirichlet process based on this important property
of the DP.

Theorem 3.2. Let π = (π1, π2, . . .) be and infinite sequence of weights derived from
the following stick-breaking process with parameter γ > 0:

βk ∼ Beta(1, γ), i = 1, 2, . . . (3.7)

πk = βk
k−1∏
j=1

(1− βj) (3.8)

Given a base measure H on Θ, suppose we draw an infinite number of samples θ∗k ∼ H

and form the following discrete probability measure:

G =
∞∑
k=1

πkδθ∗
k

(3.9)

Then this construction returns a Dirichlet process with concentration parameter γ and
base distribution H, i.e. G ∼ DP(γ,H). On the other hand, all samples from a Dirichlet
process are almost surely discrete and have a representation as in Eq. (3.9).

The almost sure discreteness of the Dirichlet process was first proven by Ferguson



Chapter 3. Nonparametric Bayesian Analysis 38

0 10 20 30 40 50 60
0

0.5

1

0 10 20 30 40 50 60
0

0.2

0.4

0 10 20 30 40 50 60
0

0.05

0.1

Stick indices

γ = 0.5

γ = 5

γ = 20

Figure 3.4: Three random stick-breaking constructions with different values of γ. Each
bar represents the length of the stick at than index. For small values of the concentration
parameter, the probability mass is mostly focused on the initial sample points, whereas
increasing γ makes the process more diffuse.

[1973]. Later, Sethuraman [1994] used this property to prove that the construction
above actually represents the Dirichlet process.

To see where the terminology of stick-breaking comes from, suppose we have a unit-
length stick and break it at position β1. Let π1 be equal to the length of the broken
stick which is β1 in this case. We then break the remainder of the stick at β2 and
let π2 be equal to the length of the new broken part. This process is continued until
we obtain our sequence of πi’s. Figure 3.3 graphically demonstrates how this process
works. Having built our measure as in Eq. (3.9), Theorem 3.2 assures us that this
construction always returns a Dirichlet process. The stick-breaking process is usually
denoted by π ∼ GEM(γ), where GEM comes from the first letters of Griffiths, Engen
and McCloskey [Pitman, 2006].

The stick-breaking construction can be seen as a special representation of a more general
case where the sample weights are drawn from Beta(ak, bk). For example, considering
ak = a and bk = b returns the Beta two parameter process [Ishwaran & Zarepour,
2000a]. This stochastic process can be extended to obtain the Poisson-Dirichlet process
[Pitman & Yor, 1997], also called the Pitman-Yor process, where the two parameters are
indexed by ak = 1− a and bk = b+ ka. The Pitman-Yor process gives more flexibility
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than the Dirichlet process and has been proven to be more suited to applications where
we model data with power-law tails (e.g., word frequencies in natural language) [Teh,
2006; Goldwater et al., 2006]. As noted by Pitman and Yor themselves, letting a = 0
and b = γ returns the Dirichlet process which we covered in detail in this section. In
the next section, we show how this construction can lead to the predictive distribution
of the Dirichlet process.

3.2.3 Prediction and the Pólya Urn Scheme

Suppose we draw a discrete measure G ∼ DP(γ,H), and draw the i.i.d samples
(y1, . . . yn) ∼ G. We can then derive the predictive distribution for yn+1 based on
Eq. (2.12) by integrating G out:

p(yn+1|y1, . . . , yn, H, γ) =∫
Θ
p(yn+1|y1, . . . , yn, G, γ,H)p(G|y1, . . . , yn, H, γ)dG (3.10)

Considering the fact that the samples are conditionally independent given the mea-
sure G, Eq. (3.10) can be further simplified as:

p(yn+1|y1, . . . , yn, H, γ)

=
∫

Θ
p(yn+1|G, γ,H)p(G|y1, . . . , yn, H, γ)dG (3.11)

=
∫

Θ
Gp(G|y1, . . . , yn, H, γ)dG (3.12)

= E(G|y1, . . . , yn, H, γ) (3.13)

where Eq. (3.12) follows from the fact that yn+1 is drawn from the discrete measure G.
We can now formally characterize the predictive distribution for the next observa-
tion yn+1 as follows:

Theorem 3.3. Let G ∼ DP (γ,H) be distributed according to a Dirichlet process,
and consider a set of n observations (y1, . . . yn) ∼ G taking K ≤ n distinct values
θ∗ = (θ∗1, . . . , θ∗K). The predictive distribution of the next observation is equal to:

p(yn+1|y1, . . . , yn, H, γ) = 1
γ + n

(
γH +

K∑
k=1

nkδθ∗
k

)
(3.14)

where nk is equal to the number of observations equal to θ∗k
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In our discussion on the stick-breaking construction in Section 3.2.2, we saw that draws
from a Dirichlet process are discrete with probability one. Hence there is always a
positive probability of multiple observations taking the same value. In other words, n
observations y = (y1, . . . yn) ∼ G will always take K ≤ n values θ∗ = (θ∗1, . . . , θ∗K). The
rest of the proof follows directly from replacing Eq. (3.13) by Eq. (3.5). For a more
formal argument, see Blackwell & MacQueen [1973].

As with many probability distributions which can be described using urn models [Mah-
moud, 2009], the model that corresponds to the Dirichlet distribution is called the
Pólya urn scheme [Teh, 2010; Fox, 2009]. Accordingly, Blackwell & MacQueen [1973]
proposed a generative process based on Theorem 3.3 to represent the Dirichlet process.
Suppose we choose a ball with any random color and place it in an initially empty urn.
Then in each of the consequent steps, we either pick a ball at random from the urn and
return it along with an additional ball of the same color θ∗, or we place a special ball
with a new unseen color in the urn. The first case, which involves drawing an existing
ball from the urn, is chosen with probability proportional to n (where n is the number
of balls already in the urn) and the second case where we chose a new ball, is chosen
with probability proportional to γ normal balls. This process allows us to directly draw
samples from a Dirichlet process without actually constructing the underlying DP.

3.2.4 Clustering and the Chinese Restaurant Process

From Theorem 3.3, we know that samples from the Dirichlet processes are discrete
probability measures made up of a countably infinite number of point masses. Therefore,
there is always a non-zero probability of two samples colliding. This implies a clustering
property for the Dirichlet process where the samples are partitioned into a finite number
of clusters.

In our discussion on the posterior distribution of the Dirichlet process, we showed that n
observations y = (y1, . . . yn) ∼ G take K ≤ n distinct values θ∗ = (θ∗1, . . . , θ∗K). This
means that we have clustered our data into K distinct clusters. Let z = (z1, z2, . . . , zn)
be the vector of indicator variables that assigns each observation to it’s corresponding
cluster; i.e.:

yi = θ∗zi
, 1 ≤ zi ≤ K (3.15)

Now if we rewrite the predictive distribution for the indicator variables, Eq. (3.14)
shows that:
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Figure 3.5: Demonstration of three consecutive steps of the Chinese restaurant process
with parameter γ. The circles are analogous to tables (clusters) and the rectangles
represent the customers (observations). Each table is labelled by the probability that
a new customer sits there.

p(zn+1|z1, . . . , zn, γ) = 1
γ + n

(
γδK+1 +

K∑
k=1

nkδk

)
(3.16)

where nk is the number of observations in cluster k, and K + 1 is a new unseen cluster.

This distribution on partitions in Eq. (3.16) is commonly referred to as the Chinese
Restaurant Process (CRP) [Pitman, 2006; Aldous, 1985]. The analogy, which stems
from the fact that there are large number of tables in a Chinese restaurant, is as follows.
Consider a Chinese restaurant with an infinite number of tables, each of which can seat
an infinite number of customers. The first customer enters and sits at the first table. In
each subsequent step, as the n’th customer enters, she sits at an already occupied table
1 ≤ k ≤ K with probability proportional to the number of people already sitting there;
i.e. nk

γ + n
, or chooses a new tableK+1 with probability proportional to γ

γ + n
. Fig. 3.5

gives a graphical representation of how this process works. The fact that most Chinese
restaurants have round tables is an important aspect of the CRP. This is because a
Dirichlet process is not only a distribution over partitions, it also defines a distribution
over their permutations.
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Figure 3.6: A sample assignment of observations to clusters in a Chinese restaurant
process with parameter γ = 15. As the number of observations grows, the number of
clusters grows only logarithmically in the number of observations.

This construction also exhibits a phenomenon that is often referred to as the rich-gets-
richer phenomenon [Teh, 2010]. Observe that in Eq. (3.16), a customer chooses an
already occupied table based on the number of people who are already sitting there.
Therefore, large tables (tables for which nk is large) grow even larger. Figure 3.6 shows
how newly entered customers tend to choose the first few tables, which are naturally
crowded. This property suggests that even if in principle we can have an infinite number
of tables, the actual number of occupied tables will be much less than the total number
of customers. In Section 3.2.5 we will show that this number grows only logarithmically
in the number of observations.

As we will see in the rest of this thesis, the Chinese restaurant process is widely used
in nonparametric Bayesian analysis because they let us define statistical models where
the observed data are allowed to be drawn from an unknown number of clusters. There
are also many variations to the CRP some of which are briefly described below.
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Figure 3.7: Demonstration of five sample paths of the nested Chinese restaurant process
for a three level nCRP. Here, five customers have entered the root restaurant that has a
card referring to another restaurant for the next day on each of its infinite tables. The
same structure repeats for each of the restaurants on the subsequent levels.

The nested Chinese Restaurant Process

The nested Chinese Restaurant Process (nCRP) [Blei et al., 2004] assumes that we have
an infinite number of infinite-table Chinese restaurants. As demonstrated in Fig. 3.7,
this is achieved by considering an infinitely deep tree structure with each level having
an infinite number of branches.

To see how the nCRP works, consider a tourist which has decided to taste the foods
of a different restaurant every day on her L day trip. On the first evening, she enters
the root restaurant and chooses a table based on Eq. (3.16). On each table, there is
a card suggesting another restaurant (each restaurant is referred to exactly once); so
she picks up the card and visits the suggested restaurant on her next day. Again, she
chooses a table from that restaurant, and continues this process for the L days she is
visiting there. At the end, she has formed a path of length L from the root restaurant
to the L-level tree described above.

While the CRP can be used for modelling uncertainty about the number of clusters, the
nested Chinese restaurant process can be used to model nested tree topologies. This
feature makes them excellent candidates for hierarchical topic modelling applications
where as we go deeper into the tree, the corresponding topics at each level will be more
specialized to that particular document [Blei et al., 2010].
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Figure 3.8: Illustration of the distance dependant Chinese restaurant process. Each
customer chooses either one or none of the other costumers to sit with at the same
table. Customers that have not chosen to sit with another person are indicated with a
double box.

The distance dependant Chinese Restaurant Process

Whereas the traditional Chinese restaurant process allows costumers to sit around the
tables in any ordering (no matter what permutation of their ordering, the probability of
that certain setting is the same), in the distance dependant Chinese restaurant processes
[Blei & Frazier, 2009], the random seating between customers depends on the distance
between them. This distance can be spatial, temporal, or any other relevant charac-
teristic. Therefore, instead of assigning customers to tables, the distance dependent
CRP assigns customers to other customers. As a result, if two people are reachable
by a sequence of costumers, they are seated at the same table. Figure 3.8 shows the
customer to customer assignment for a sample distance dependent CRP along with the
familiar table assignments for this sample.

The distance dependant CRP makes it possible to model many kinds of dependencies
between data in infinite models. Blei & Frazier [2009] study how this dependency can
be incorporated into language modelling applications.

The Indian Buffet Process

Another important extension of the CRP is the Indian Buffet Process (IBP) [Griffiths
& Ghahramani, 2005; Ghahramani et al., 2007; Doshi, 2009]. In contrast to the CRP
where the data points belong to one and only one cluster, in the Indian buffet process
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Figure 5: A binary matrix generated by the Indian buffet process with α = 10.

new dishes. Vertically concatenating the choices of the customers produces the binary matrix
shown in the figure.

Using K
(i)
1 to indicate the number of new dishes sampled by the ith customer, the proba-

bility of any particular matrix being produced by this process is

P (Z) =
αK+

∏N
i=1K

(i)
1 !

exp{−αHN}
K+∏

k=1

(N −mk)!(mk − 1)!

N !
. (35)

As can be seen from Figure 5, the matrices produced by this process are generally not in left-
ordered form. However, these matrices are also not ordered arbitrarily because the Poisson
draws always result in choices of new dishes that are to the right of the previously sampled
dishes. Customers are not exchangeable under this distribution, as the number of dishes

counted as K
(i)
1 depends upon the order in which the customers make their choices. How-

ever, if we only pay attention to the lof -equivalence classes of the matrices generated by this

process, we obtain the exchangeable distribution P ([Z]) given by Equation 34:
QN

i=1 K
(i)
1 !

Q2N−1
h=1 Kh!

ma-

trices generated via this process map to the same left-ordered form, and P ([Z]) is obtained by
multiplying P (Z) from Equation 35 by this quantity.

It is possible to define a similar sequential process that directly produces a distribution
on left-ordered binary matrices in which customers are exchangeable, but this requires more
effort on the part of the customers. In the exchangeable Indian buffet process, the first customer
samples a Poisson(α) number of dishes, moving from left to right. The ith customer moves
along the buffet, and makes a single decision for each set of dishes with the same history. If
there are Kh dishes with history h, under which mh previous customers have sampled each of
those dishes, then the customer samples a Binomial(mh

i ,Kh) number of those dishes, starting
at the left. Having reached the end of all previous sampled dishes, the ith customer then tries a
Poisson(αi ) number of new dishes. Attending to the history of the dishes and always sampling
from the left guarantees that the resulting matrix is in left-ordered form, and it is easy to show

13

Figure 3.9: Samples from an Indian Buffet Process where the columns represent different
features (possibly infinite) and the rows correspond to a finite number of observations.
Figure from Griffiths & Ghahramani [2005]

each observation may belong to an infinite number of clusters at the same time. We
can think of the clusters as latent features where each observation may be described
by an infinite number of these latent variables. This can be regarded as a potentially
infinite binary matrix as shown in Fig. 3.9.

The generative process for the Indian buffet process works as follows. Suppose there
are n customers in a queue at an infinitely long Indian buffet. The first customer
enters and tries the first Poisson(α)1 dishes. For every costumer who later enters the
restaurant, she samples from already sampled dishes with probability proportional to
the number of people who have tried each dish, as well as Poisson(α

n
) new dishes.

Although the IBP is considered as an infinite process, the construction shows that
each customer almost surely has a finite number of dishes. The model described in this
section can be used to infer an unknown number of latent features in data. For example,
different symptoms of various diseases are usually modelled using an IBP, because the
symptoms may be the same for various causes.

1The Poisson distribution is suitable for applications that involve counting the number of times
a random event occurs in a given amount of time. Its probability mass function is given by

P (X = n) = e−λ (λ)n

n! where λ is the expected number of occurrences in the interval.
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Figure 3.10: An illustration of the Chinese Restaurant Franchise, where the restaurants
are depicted by a rectangle. Customers sit around the tables like the standard CRP,
and at each table of each restaurant ψij a dish is served from a global menu φ1, φ2 . . .

The Chinese Restaurant Franchise

The Chinese Restaurant Franchise (CRF) [Teh et al., 2006] is one other extension of
the CRP to multiple restaurants where they all share the same set of dishes. Like
the Chinese restaurant process, customers enter the restaurant and chose their seats
based on popularities similar to Eq. (3.16). However, the first costumer at each table
of each restaurant orders a meal from an unbounded global menu φ1, φ2 . . . and this
meal is shared among all the other customers sitting around that table, ψij, where i is
the restaurant number and j the specific table at that restaurant. Since the menu is
global, multiple tables at different restaurants can order the same dish, as depicted in
Fig. 3.10.

The construction of the CRF is such that the popular dishes get more popular. This
has been proved to be useful in the detection and recognition of objects [Sudderth
et al., 2006] as well as in Hierarchical Dirichlet Processes (HDP) [Teh et al., 2006]
where the goal is to cluster grouped data using Dirichlet Process Mixture Models which
we will explain in Section 3.3. In such settings, even though the data are separated
into groups, but it is usually assumed that there are underlying links between data.
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Group clustering problems occur frequently in practice, specially in the problem of
topic discovery in document corpora.

3.2.5 Number of Unique Observations

In the previous sections, we discussed many important properties of the Dirichlet process
and showed that instances from a DP are almost surely discrete (Theorem 3.2). We
will conclude our discussion on the Dirichlet process by considering one illuminating
aspect, specifically the number of unique observations K in a sequence of n samples.
From Eq. (3.14) we know for the i’th sample, the probability of it having a new distinct
value is equal to γ

γ + i− 1 . By averaging over our n observations, we obtain:

E(K|n, γ) =
n∑
i=1

γ

γ + i− 1 ≈ γ log
(
γ + n

γ

)
(3.17)

where the approximation works when n → ∞. In other words, the number of distinct
observations grows only logarithmically in the number of samples. We have already
seen this behaviour in Fig. 3.6, where even though we had 5000 samples, but number
of distinct values turned out to be near 90 which is close to the number that the
approximation in Eq. (3.17) returns.

Along with this important result, Antoniak [1974] also derived the distribution of the
number of unique observations as:

p(K|n, γ) = Γ(γ)
Γ(γ + n)s(n,K)γK (3.18)

Here s(n,K) are the unsigned Stirling numbers of the first kind1 and can be computed
using recurrence formulae. However, the calculation of Stirling numbers using such
formulae can be computationally inefficient when there are a large number of observa-
tions. For large n with k = o(log(n)), Abramowitz & Stegun [1972] gave the following
asymptotic approximation:

s(n,K) ≈ (n− 1)!
(K − 1)!(γe + log(n))K−1 (3.19)

1The unsigned Stirling numbers of the first kind are the coefficients in the expression

x(x− 1) . . . (x− n+ 1) =
n∑
k=1

s(n, k)xk. For a table of these numbers, as well as many of their in-

teresting properties refer to Abramowitz & Stegun [1972].
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where γe is the Euler - Mascheroni constant. Equation (3.18) is important for consid-
ering the implications of specific values of the concentration parameter γ on our prior
over K.

In the next section, we will introduce an important statistical model based on the
clustering effect of the CRP representation. This model is called the Dirichlet Pro-
cess Mixture Model and is probably the most common application of the Dirichlet
process [Teh, 2010].

3.3 The Dirichlet Process Mixture Model

In many situations, the observed data may be regarded as stemming from multiple
populations. It is thus desirable to build models that can give us the ability to combine
these samples. As an example, suppose we want to model the average number of
words appearing in a document. If we consider the whole words of the document
having the same underlying statistical model (one single cluster), our results and the
inferences based on them may not be accurate. However, if we consider the document
as comprising of different dialogue acts (one cluster for each dialogue act), and also
each dialogue act to have its own statistical parameters, then we expect to get much
better estimates for the quantities of interest. The statistical modelling of the Dihanna
corpus, explained in Chapter 5, is based on this second approach.

The basic principle behind mixture models is to introduce and make inferences about
a set of unobserved indicator variables z = (z1, . . . , zn); given a set of observations
y = (y1, . . . , yn), the matrix of indicator variables z specifies the mixture component
from which each of our observations is drawn from. In the following sections, we will first
consider the case where we know the number of clusters of our mixture model a priori,
and later, we incorporate our uncertainty in the true number of clusters by applying
the clustering effect of the Chinese restaurant processes described in Section 3.2.4.

3.3.1 Finite Mixture Models

In Finite Mixture Models [McLachlan & Peel, 2000; Everitt & Hand, 1981; Gelman
et al., 2004] we assume that our observations are drawn from K mixture compo-
nents, but we don’t know the component which underlies each observation. For every
1 ≤ j ≤ K, we assume that the corresponding component has a density function fj
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which depends on the parameter vector θj . Furthermore, the parameter denoting the

proportion of the population belonging to component i is denoted by λj with
K∑
j=1

λj = 1.

In practice, we normally assume that the density function of the components belong to
the same parametric family with only their parameter vectors being different from one
another. Under such circumstances, the sampling distribution of a single observation y
is:

p(y|θ,λ) = λ1f(y|θ1) + λ2f(y|θ2) + . . .+ λKf(y|θK) (3.20)

We can think of the mixing proportions λ as hyperparameters that determine the distri-
bution of the indicator variables. Suppose we represent each zi as a vector ωi such that:

ωij =

 1 if yi is drawn from the j’th mixture component,
0 otherwise.

Therefore, each ωi has only one single non-zero element. We can think of the distri-
bution over this latent variable vector to be Multinomial(λ1, . . . , λm). Let Ω be the
n×K matrix composed of the vectors ωi, it then follows that the joint distribution of
the data and the indicator variables is:

p(y,Ω|Θ,λ) = p(Ω|λ)p(y|Ω,Θ) =
n∏
i=1

K∏
j=1

(λjf(yi|θj))ωij (3.21)

where Θ is the matrix of parameter vectors; i.e. each row contains the parameters of
the corresponding mixture component distribution.

Prior Distribution for the Parameters

There are two parameters in a mixture model as described above; the mixing propor-
tions λ = (λ1, . . . λK) and the matrix of parameters of the probability distribution
function corresponding to each component Θ. As we described earlier, the indicator
variable vector (ωi1, . . . , ωiK) of each observation is thought of as a random variable
with distribution Multinomial(λ1, . . . , λK). Therefore, a natural choice for the prior
on λ is the conjugate prior distribution of the multinomial distribution; the Dirichlet
distribution λ ∼ Dirichlet(α1, . . . , αK). As we know from the discussion on the Dirich-
let distribution in Section 2.3.3, the αj determine the mean of the prior distribution
whereas their sum s = ∑

i(αi) is a measure of the concentration or strength of the prior.
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In general, there are no restrictions on the prior for the component parameter matrix Θ.
However, a popular choice is the Dirichlet distribution as we will describe below us-
ing an over simplified example. Before that, we will summarize these discussions and
give a hierarchical representation for the finite mixture model which will help better
understand the structure and interdependence of model parameters.

Hierarchical Representation

With the discussions in this section, we can give the following hierarchical representation
for a finite mixture model:

yi|z,Θ ∼ f(yi|θzi
) 1 ≤ i ≤ n

zi|λ ∼ Multinomial(λ1, . . . , λK)
θj ∼ G0 1 ≤ j ≤ K

λ ∼ Dirichlet(α1, . . . , αK)

(3.22)

where θzi
refers to the parameter vector corresponding to mixture component zi. We

can equivalently rewrite the finite mixture model in terms of draws from a discrete
distribution GK and then sampling the parameter matrix from this distribution as
represented below:

yi|θ̂ ∼ f(yi|θ̂i)
θ̂i ∼ GK

GK(θ) =
K∑
j=1

λjδθj

λ ∼ Dirichlet(α/K, . . . , α/K)
θj ∼ H0 1 ≤ j ≤ K

(3.23)

It can be shown that these two representations are statistically equivalent (see e.g.
Ishwaran & Zarepour [2002] or Sudderth [2006]). Later, we will show that the represen-
tation in Eq. (3.23) provides a way to approximate the Dirichlet process mixture model
that we will explain in the next section.

To help clarify the generative process of building a finite mixture model based on Eqs. (3.22),
consider the following illustrative example. Suppose we have a dialogue which is com-
prised of only two types of utterances; U1 with parameter θ1 and U2 with parameter θ2.
Also, suppose that our vocabulary dictionary simply contains the words A, B and C. To
construct the model, we first draw the mixing proportions from a Dirichlet distribution
with parameters estimated as 0.5 and 1; i.e. λ1, λ2 ∼ Dirichlet(1, 3). What this means
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Figure 3.11: An example of a finite mixture model. The top plot depicts 100 multino-
mial samples from a prior over components with distribution Dirichlet(1, 3). The two
bottom plots illustrate sample words for each of the drawn sample when the param-
eters of the first and second component are drawn from θ1 ∼ Dirichlet(3, 1, 1) and
θ2 ∼ Dirichlet(1, 3, 1), respectively.

is that most of our samples belong to U2 because the mean of the Dirichlet distribution
is closer to the second utterance, as depicted in the top plot of Fig. 3.11.

The next step is to draw the parameters of each utterance, θ1 and θ2 from an appropriate
distribution. As we will fully explain in Chapter 5, by modelling utterances using
the ’bags of words’ model, it is rational to regard each utterance as a Multinomial
distribution over the vocabulary space, and thus a good choice of G0 would be its
conjugate prior distribution, the Dirichlet distribution. Again using some estimation
techniques, suppose we figure out that the parameter vector of the components are
drawn from θ1 ∼ Dirichlet(3, 1, 1) and θ2 ∼ Dirichlet(1, 3, 1), respectively. Therefore
by assuming that we have 5 observations, a hierarchical representation for the model
described here, similar to that of Eq. (3.22), would be as follows:
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yi ∼ Multinomial(θzi
) 1 ≤ i ≤ 5

zi ∼ Multinomial(λ1, λ2)
θ1 ∼ Dirichlet(3, 1, 1)
θ2 ∼ Dirichlet(1, 3, 1)

λ1, λ2 ∼ Dirichlet(1, 3)

(3.24)

Fig. 3.11 shows 100 multinomial samples from this model. As we discussed above,
utterances that belong to U1 will have more A’s than B or C, whereas utterances from
U2 will have more B’s than A or C.

Following the steps described above, we first draw a component zi ∼ Multinomial(λ1, λ2)
for each utterance yi, and then based on the component that it belongs to, the words
in each utterance are generated from repeated draws from the corresponding compo-
nent distribution Multinomial(θzi

). For example, we may have the following draws
y1 = AABCA, y2 = BABCB, y3 = BBBA, y4 = BAABCA and y5 = ACBBB

where y1 and y4 belong to the first component while y2, y3 and y5 are from the second
component.

3.3.2 Infinite Mixture Models

We can make use of the nonparametric nature of the Dirichlet process to generate
mixture models with an infinite number of clusters. As with finite mixture models,
assume that we have a hierarchical model in which each of our observations yi has a
density function f with independently sampled parameter vector θi. However, in the
limitK →∞, the corresponding labels lose their meaning as the space of possible labels
becomes continuous [Ranganathan, 2006]. This means that we can discard the labels
and since the infinite limit of a Dirichlet distribution is a Dirichlet process, the infinite
dimensional counterpart of the mixture model explained above would be as follows:

yi|Θ ∼ f(yi|θi)
θi|G ∼ G

G|γ,H ∼ DP(γ,H)
(3.25)

This is called the Dirichlet Process Mixture Model (DPMM) [Antoniak, 1974; Ran-
ganathan, 2006; Neal, 2000; Sudderth, 2006]. To see that it is actually the infinite
limit of the finite mixture model, suppose we place a symmetric Dirichlet prior over the
mixing proportions in Eq. (3.22):

λ1, . . . , λK ∼ Dirichlet( α
K
, . . . ,

α

K
) (3.26)
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Now consider the marginal probability of the indicator variables given the previous
values by applying Eq. (2.12):

p(zi = cj|z1, . . . , zi−1) =
∫

Θ
p(zi = cj|λ)p(λ|z1, . . . , zi−1) (3.27)

where cj refers to the j’th component, thus it follows that p(zi = cj|λ) = λj. Further-
more, we know that λ follows a Dirichlet distribution, and by the Dirichlet-Multinomial
conjugacy, the posterior is also a Dirichlet with the vector of sufficient statistics updated
as in Eq. (2.35). Therefore, we can simplify Eq. (3.27) as follows:

p(zi = cj|z1, . . . , zi−1) =
∫

Θ
λjp(λ|z1, . . . , zi−1) (3.28)

= E(λj|z1, . . . , zi−1) (3.29)

= nj + α/K

α + i− 1 (3.30)

where the last line follows from Eq. (2.32).

Now if we take the limit K → ∞, the conditional probability in Eq. (3.30) reach the
following limits:

lim
K→∞

p(zi = cj|z1, . . . , zi−1) =


nj

α + i− 1 if 1 ≤ j ≤ K

α

α + i− 1 if j = K + 1
(3.31)

Comparing this result with Eq. (3.16) shows that in the limitm→∞, the finite mixture
model explained above is the same as the Dirichlet process mixture model described
in Eq. (3.25). The following theorem from Ishwaran & Zarepour [2002] makes use of
this result and suggests that in this limit, predictions based on the finite mixture model
approach those of the corresponding Dirichlet process mixture model.

Theorem 3.4. Let H denote a probability measure on Θ and f a real valued measurable
function with domain Θ. Consider the discrete distribution GK and it’s corresponding
mixture model as described in Eq. (3.23). As K →∞, expectations with respect to GK

converge in distribution to a corresponding Dirichlet process:∫
Θ
f(θ)dGK(θ)→

∫
Θ
f(θ)dG(θ) G ∼ DP(γ,H) (3.32)

We can apply Theorem 3.4 to approximate a DP mixture model by finite means. Ish-
waran & Zarepour [2000b] suggested a Gibbs sampling algorithm for approximate learn-
ing of the model, however, they noted that their approximation converges slowly with
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the number of clusters K and a large number of potential clusters may be required [Ish-
waran & Zarepour, 2002; Sudderth, 2006]. More accurate stochastic approximations
based on the truncated stick-breaking representation have been proposed by Ishwaran
& James [2001] and Ishwaran & Zarepour [2000b], as well as deterministic variational
alternatives by Blei & Jordan [2006] and Kurihara et al. [2007].

3.3.3 Sampling from the Dirichlet Process Mixture

Given a set of observations y = (y1, . . . , yn) and the parameters γ and H, the Dirichlet
process mixture model of Eq. (3.25) gives a posterior distribution for the matrix of
indicator variables Θ. However, the discreteness of the random measure G makes exact
calculation of this posterior mathematically intractable due to the need to take into
account all possible configurations that the θi’s are identical and distinct (see Anto-
niak [1974] for a thorough discussion). Therefore, we have to resort to approximation
methods to calculate the posterior.

Among different approximation methods, MCMC techniques and in particular, the
Gibbs sampler, have gained widespread popularity. Below we will describe a general
framework for the Gibbs sampler which we have also used for our experiments in Chap-
ter 5.

Consider the predictive distribution for the indicator variables as mentioned in Eq. (3.16).
Since the joint distribution of the indicators does not depend on their ordering, for
each zi we condition not only on the previous values z1, . . . , zi−1, but on all zj from 1
to n except zi itself. Let z(−i) stand for this vector. Our goal is to find the posterior
on zi given z(−i) and a data instance yi, as well as the Dirichlet process parameters. To
do this, consider that for any set of events A, B and C where B and C are independent,
we have:

p(A|B,C) = p(C|A,B)p(A|B)
p(C) (3.33)

This simple probability fact can be easily obtained from Bayes’ theorem (Theorem 2.1)
and the definition of conditional probability in Eq. (2.6). Now by applying Eq. (3.33),
we can write the conditional distribution of our posterior in unscaled form as:

p(zi|z(−i), yi, γ,H) ∝ p(yi|z)p(zi|z(−i), γ,H) (3.34)

From Eq. (3.25), we know that the likelihood p(yi|z) = f(yi|z). As for the second term,
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from Eq. (3.16) we have:

p(zi|z(−i), γ,H) = 1
γ + n− 1

γH +
∑
j 6=i

δzj

 (3.35)

Now by combining these equations, we get the following conditional distribution for use
in Gibbs sampling:

p(zi|z(−i), yi, γ,H) = bγH(zi)f(yi|zi) + b
∑
j 6=i

f(yi|zj)δzj
(3.36)

where b is the normalizing constant and is equal to:

b =
γ ∫

z
H(z)f(yi|z)dz +

∑
j 6=i

f(yi|zj)
−1

(3.37)

It can be observed that the term
∫
zH(z)f(yi|z)dz in Eq. (3.36) is the marginal distri-

bution of yi, thus we can rewrite the equation in terms of the posterior fp

p(zi|z(−i), yi, γ,H) =
(
bγ
∫
z
H(z)f(yi|z)dz

)
fp(zi|yi) + b

∑
j 6=i

f(yi|zj)δzj
(3.38)

where fp is equal to:

fp(zi|yi) = H(z)f(yi|z)dz∫
zH(z)f(yi|z)dz (3.39)

Based on these equations, Escobar [1994] proposed the simple Gibbs sampler described
in Algorithm 2 (see also [Escobar & West, 1995]).
For the sampling algorithm to be feasible, calculation of the integral and sampling
from fp must be computationally tractable. This is normally achieved when H is chosen
to be the conjugate prior of fp. Based on this clever sampling algorithm, MacEachern
[1994] developed an alternative sampling strategy which most of the later sampling
algorithms are based on this idea. A more detailed description of this algorithm can
be found in MacEachern & Muller [1998]. Further work and discussion on a variety
of sampling algorithms, even for the case where non-conjugate priors are used, can be
found in [Neal, 2000].
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Algorithm 2: Gibbs sampling from p(zi|zj(−i), yi, γ,H)
1 Choose a starting point z0 = (z0

1, z0
2, . . . , z0

n) ;
2 Generate new samples as follows
3 for j + 1 = 1 to T do
4 for i = 1 to n do
5 Sample zj+1

i from the posterior distribution p(zi|zj(−i), yi, γ,H) as follows:
6 begin
7 zj+1

i = zjl , l 6= i, with probability bf(yi|zjl )

8 zj+1
i ∼ fp(z|yi) with probability bγ

∫
z
H(z)f(yi|z)dz

9 end
10 end
11 end

3.4 Summary

In this chapter, we discussed the principles of nonparametric Bayesian methods. Among
all nonparametric approaches, we gave a detailed overview of the Dirichlet process
with its properties demonstrated through its different representations. Among these
processes, the Chinese restaurant process is the most widely used representation due to
its emphasis on the clustering effect of the DP. Many variations of the CRP have been
proposed in the literature, among which we discussed the nested CRP, the distance
dependent CRP, the Indian buffet and the Chinese Restaurant Franchise. We also
covered finite mixture models and their infinite dimensional counterpart, the Dirichlet
process mixture model.

The last section was devoted to a Gibbs sampler for the DPMM which we will use
for the experiments in Chapter 5. The next chapter will elaborate on both finite and
infinite mixture models and provide means for estimating hyperparameters in these
models.



Chapter 4

Hyperparameter Estimation for
Mixture Models

In classification applications using mixture models that deal with text data, such as the
problem of dialogue act classification, it is normally assumed that the appearance of
words in each component follows a multinomial distribution with parameters governed
by a Dirichlet distribution prior (or a Dirichlet process, in the case of infinite mixture
models). However, this choice of prior is strongly dependent on the hyperparameters of
the corresponding finite or infinite dimensional Dirichlet distribution. In this chapter,
we will discuss some of the most important methods devised for this purpose, along with
two new improvements for constraint-based estimation of the hyperparameters in the
finite dimensional case.

4.1 Finite Mixture Hyperparameter Estimation

In Section 3.3.1 we introduced the finite mixture model and gave an example in the
domain of text modelling to demonstrate how these models work. There we mentioned
that it is usual to assume a Multinomial distribution for the words appearing in each
utterance, and a natural choice for the prior would be its conjugate distribution, namely
the Dirichlet distribution. This combination is often called the Dirichlet-Multinomial
distribution which we will start this section by giving a brief overview of its most
important properties.
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4.1.1 The Dirichlet-Multinomial Distribution

The Dirichlet-Multinomial distribution, also called the Multivariate Polya Distribtion
(MPD) [Kvam & Day, 2001; Minka, 2003] or the Dirichlet Compound Multinomial
(DCM) [Madsen et al., 2005; Elkan, 2006], is a hierarchical model where the observa-
tions are drawn from a multinomial distribution whose parameters are generated by a
Dirichlet distribution. They normally arise in applications where we have to estimate
probabilities from count data; these include topic modelling [Steyvers & Griffiths, 2007],
military combat modelling where targets are randomly assigned to platforms [Kvam &
Day, 2001], or biological sequence analysis where different nucleotides occur at different
positions in a DNA sequence [Durbin, 1998].

Suppose we have a set of observations D = {y1, . . . ,yn} each composed of a vector
of counts ci, i = 1, . . . , n. Following the notation in Eq. (3.22) we can represent this
model hierarchically as follows:

yi = (ci1, . . . , ciK)T |θ ∼ Multinomial(θ1, . . . , θK)
θ = (θ1, . . . , θK)T |β ∼ Dirichlet(β1, . . . , βK) (4.1)

The main intuition for using the Dirichlet-Multinomial distribution in text and dialogue
modelling is that each document (or utterance) can be thought of as a multinomial
distribution over the set of possible words, which this multinomial is itself governed by
a Dirichlet prior. Here the Dirichlet represents a general topic, while the multinomial
makes the words likely for the document chosen. For example, suppose we have a news
feed about soccer events in Europe, some generated from a multinomial distribution
which gives high probability to Italian soccer team names, others emphasizing on the
English Premier League teams. By using a Dirichlet prior, this prior distribution which
represents the whole news feed, gives high probability to the multinomials representing
these two leagues, while giving low probability to other leagues such as the German
Bundes Liga.

Let us denote the sum of counts for the observation vector i by ni, and the total number
of counts in component k by mk. In other words:

ni =
K∑
k=1

cik (4.2)

mk =
n∑
i=1

cik (4.3)

Therefore, from Eq. (3.30) we can write the predictive probability of observing out-
come k in the context of the d’th experiment as follows:
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p(k|d,D,β) = cdk + βk

nd +∑K
i=1 βi

(4.4)

We will now derive some important properties of the Dirichlet-Multinomial distribution
which will be used in the rest of the thesis.

Marginal Distribution

In most applications, even though we talk about the multinomial parameters θ, the
only actual parameters that are important in our modelling are the parameters of the
Dirichlet prior β. Therefore it is desirable to calculate the probability of our observa-
tions with the multinomial parameters marginalized out. According to Eq. (2.8) this
probability can be written as follows:

p(yi|β) =
∫

Θ
p(yi|θ)p(θ|β)dθ (4.5)

According to our hierarchical model as expressed in Eq. (4.1), we assume that p(y|θ)
follows a multinomial distribution and p(θ|β) follows a Dirichlet distribution. We can
thus simplify Eq. (4.5) by replacing their corresponding probability function:

p(yi|β) =
∫

Θ


ni!

K∏
k=1

cik!

K∏
k=1

θcik
k




Γ(

K∑
k=1

βk)

K∏
k=1

Γ(βk)

K∏
k=1

θβk−1
k

 dθ (4.6)

= ni!
K∏
k=1

cik!

Γ(
K∑
k=1

βk)

K∏
k=1

Γ(βk)

∫
Θ

K∏
k=1

θcik+βk−1
k dθ (4.7)

It can be observed that the term inside the integral of Eq. (4.7) is the unnormalized
version of the Dirichlet distribution with parameters (yi + β), and using the fact that
integrating a distribution over all possible parameter values must yield 1, the integral
of Eq. (4.7) has to be equal to the inverse of the normalizing factor. In other words:

∫
Θ
Dirichlet(yi + β) =

Γ
(

K∑
k=1

cik + βk

)
K∏
k=1

Γ(cik + βk)

∫
Θ

K∏
k=1

θcik+βk−1
k dθ = 1 (4.8)
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So if we replace the integral in Eq. (4.7) with the inverse of the coefficient of the same
integral in Eq. (4.8), we can easily get:

p(yi|β) =
Γ(ni + 1)Γ

(
K∑
k=1

βk

)

Γ
(

K∑
k=1

cik + βk

) K∏
k=1

Γ(cik + βk)
Γ(cik + 1)Γ(βk)

(4.9)

where we have replaced the factorials with Gamma functions using the fact that Γ(n+
1) = n! for positive integers, thus transforming Eq. (4.9) into products of only Gamma
functions. In order to simplify calculations, it is normally preferable to work with the
logarithm of the marginal distribution which can be written as:

log p(yi|β) =

log Γ(ni + 1) + log Γ
(

K∑
k=1

βk

)
− log Γ

(
K∑
k=1

(cik + βk)
)

+
K∑
k=1

(log Γ(cik + βk)− log Γ(cik + 1)− log Γ(βk)) (4.10)

Using the logarithm probability has two main advantages; first, the logarithm of the
Gamma function grows much slower and converts computationally demanding multipli-
cation operations into simple additions and subtractions. Also, in many programming
languages, there are functions which approximate the logarithm of the Gamma func-
tion, mainly based on formulae proposed by Rocktaeschel [1922] and Bohmer [1939] (in
MATLAB, this function is called the gammaln function). Second, for the maximum
likelihood estimate of the hyperparameters that we will discuss in the remainder of
this chapter, finding the derivative of the logarithm is much easier than working with
the original function as expressed in Eq. (4.9). We will get back to this issue later in
Section 4.1.2.

Predictive Distribution

Suppose we are interested in drawing conclusions about potential values of a new
observation yf = (cf1, . . . , cfK)T which is independent of the previous observations
D = {y1, . . . ,yn}. This distribution, which is the probability of a future observation
conditional on previous observations, should be calculated using Eq. (2.12) by evaluat-
ing the integral:

p(yf |y1, . . . ,yn,β) =
∫

Θ
p(yf |θ)p(θ|y1, . . . ,yn,β)dθ (4.11)
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By comparing the right hand sides of Eqs. (4.11) and (4.4), it can seen that the only
difference between the two integrands is that in the case of prediction, we must deal
with the posterior Dirichlet distribution instead of the original Dirichlet prior. In other
words, instead of drawing θ ∼ Dirichlet(β), here we have to draw θ ∼ Dirichlet(β+m)
where the vector m is defined as:

m = (m1,m2, . . . ,mK)T (4.12)

and the mk are the same as in Eq. (4.2). With the same argument, it thus follows that
the predictive distribution is equal to:

p(yf |y1, . . . ,yn,β) =

Γ(nf + 1)Γ
(

K∑
k=1

mk + βk

)

Γ
(

K∑
k=1

cfk +mk + βk

) K∏
k=1

Γ(cfk +mk + βk)
Γ(cfk + 1)Γ(mk + βk)

(4.13)

For the same reasons discussed previously, it is usually more convenient to work with
the logarithm of the predictive distribution which can be written as follows:

log p(yf |y1, . . . ,yn,β) =

log Γ(nf + 1) + log Γ
(

K∑
k=1

(mk + βk)
)
− log Γ

(
K∑
k=1

(cfk +mk + βk)
)

+
K∑
k=1

(log Γ(cfk +mk + βk)− log Γ(cfk + 1)− log Γ(mk + βk)) (4.14)

Therefore, from the above discussions, the only hyperparameters that need to be es-
timated for making any sort of Bayesian inference in finite mixture models are the
parameters of the Dirichlet prior. In the rest of this chapter, we will cover some of the
basic estimation techniques for obtaining estimates in these models.

4.1.2 Hyperparameter Estimation Techniques

Suppose we have a set of i.i.d observations D = {y1, . . . ,yn} drawn from a Dirichlet-
Multinomial distribution as described in the previous section. In this case, the log
likelihood of the dataset given the Dirichlet hyperparameters, L(β), can be written as:

L(β) = log p(D|β) =
n∑
i=1

log p(yi|β) (4.15)
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where log p(yi|β) is given in Eq. (4.10). To find the maximum likelihood estimate of the
hyperparameters, we normally try to find the roots to the derivative of the likelihood
function; i.e. to solve the following equation:

∇L(β) = (g1(β), . . . , gK(β))T = 0 (4.16)

where each component gk(β) is given by:

gk(β) = ∂L(β)
∂βk

=

n∑
i=1

(
ψ(cik + βk)− ψ(βk) + ψ

(
K∑
k=1

βk

)
− ψ

(
K∑
k=1

(cik + βk)
))

(4.17)

and ψ is the digamma function1. Since we will be dealing with Eq. (4.17) many times
in the following sections, it is better to simplify the equation and write it as:

∂L(β)
∂βk

= L1(βk) + L2(β) (4.18)

where L1 is the part of gk which depends only on the parameter βk, and L2 depends
on βk only through the sum of the vector β:

L1(βk) =
n∑
i=1

(ψ(cik + βk)− ψ(βk))

L2(β) =
n∑
i=1

(
ψ

(
K∑
k=1

βk

)
− ψ

(
K∑
k=1

(cik + βk)
)) (4.19)

Unfortunately, there is no closed form solution for the zeros of Eq. (4.17), thus we have
to resort to numerical optimization techniques.

Most of the literature on finding the optimal hyperparameter values of a Dirichlet-
Multinomial distribution are based on the works of Minka [2003]. However, as noted by
Huang [2005], the proposed methods lack an important nontrivial implementation con-
straint; that the hyperparameters of the Dirichlet prior must be positive. This is true for
all Minka’s algorithms except for his fixed point iteration method which itself enforces
this condition due to its construction. Below we will improve two of Minka’s algo-
rithms by applying constraint based optimization techniques. To the writers knowledge

1The digamma function is the logarithmic derivative of the Gamma function, in other words:
ψ(x) = d

dx
log Γ(x).
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no previous attempt has been made to incorporate constraints on the hyperparameters
into estimation techniques. We begin with exponential mapping for Newton–Raphson
iterations, and formulae for finding the optimal estimators.

Newton–Raphson using an Exponential Mapping

The Newton–Raphson method is a widely used, powerful method for finding the roots of
a function. Here we will give a very brief overview of this method, interested readers may
refer to Burden & Faires [2010], Kreyszig [2007] or Yang [2008] for complete explanation
along with numerous examples.

The multivariate version of the Newton–Raphson method attempts to find the maxima
or minima of functions of multiple variables:

f(x) = f(x1, . . . , xK) (4.20)

The extrema of f can be obtained by finding the solutions to the equation ∇f(x) = 0.
It can be shown that under certain easily-met conditions (see e.g. Burden & Faires
[2010]), the following iteration scheme will converge to an extremum point of f(x):

xnew = xold −
[
Hf(xold)

]−1
∇f(xold) (4.21)

where Hf(x) is the Hessian matrix of f(x) defined as:

Hf(x) =



∂2f
∂x2

1

∂2f
∂x1 ∂x2

· · · ∂2f
∂x1 ∂xK

∂2f
∂x2 ∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2 ∂xK

... ... . . . ...

∂2f
∂xK ∂x1

∂2f
∂xK ∂x2

· · · ∂2f
∂x2

K


(4.22)

Now let us return to the original problem in which we were trying to maximize the
MLE by finding the roots of Eq. (4.16). As we noted in Section 2.3.3, here we are
constrained to β > 0 because the parameters of the Dirichlet distribution must always
remain positive. This constraint must be satisfied not only in the final solution, but
also in every step of our iteration scheme.
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There are two ways to enforce this condition. In this section, we will approach this goal
by mapping each component of our parameter vector into an exponential component,
in other words by using the following mapping:

(β1, . . . , βK)T 7−→ (eτ1 , . . . , eτK )T (4.23)

The advantage of this mapping is that no matter what the choice of the parameters τk,
we will always have a positive value for βk. It is obvious that we can get from one
representation to the other by:

βk = eτk , and τk = log βk (4.24)

Therefore, our goal is now to find the optimal values of τ = (τ1, . . . , τK)T that maximize
Eq. (4.15) with this new parametrization; i.e. maximize I(τ ) = L(eτ1 , . . . , eτK ). This
implies that we should find the gradient and inverse Hessian matrix of I(τ ). To do this,
we use a simple trick inspired by the equalities in Eq. (4.24) and instead of differenti-
ating the latter function with respect to τ , we differentiate the original function L(β)
with respect to logβ and reparametrize after having finished the calculations. For the
gradient, this amounts to the following equation for each of the components:

∂I(τ )
∂τk

[τ 7→log β]
≡ ∂L(β)

∂ log βk
= ∂L(β)

∂βk

(
∂ log βk
∂βk

)−1

= βk
∂L(β)
∂βk

(4.25)

where the symbol
[τ 7→log β]
≡ means that the two sides are equivalent under the map-

ping τ 7−→ log β. In order to find the second order derivatives, there are two cases that
we should deal with separately; first is when the derivative of Eq. (4.25) is taken with
respect to the same variable log βk, in which case calculations lead to:

∂2I(τ )
∂τ 2

k

[τ 7→log β]
≡ ∂2L(β)

∂(log βk)2 = ∂

∂ log βk

[
βk
∂L(β)
∂βk

]
= ∂

∂βk

[
βk
∂L(β)
∂βk

](
∂ log βk
∂βk

)−1

= β2
k

∂2L(β)
∂β2

k

+ βk
∂L(β)
∂βk

(4.26)

It is also necessary to find the second order derivative when the variable indices are
different; i.e. derivation with respect to log βk when k 6= j:

∂2I(τ )
∂τj∂τk

[τ 7→log β]
≡ ∂2L(β)

∂ log βj∂ log βk
= ∂

∂ log βj

[
βk
∂L(β)
∂βk

]
= βkβj

∂2L(β)
∂βj∂βk

(4.27)

These results show that in order to find the first and second order derivatives of I(τ ),



Chapter 4. Hyperparameter Estimation for Mixture Models 65

we just need to find the corresponding derivatives of the original function L(β), replace
them into Eqs. (4.25)-(4.27), and then map every variable according to the mapping
defined in Eq. (4.24).

We have already found the first derivative of L(β) in Eq. (4.17). As for the second
derivative when the derivative is taken with respect to the same variable, we have:

∂2L(β)
∂β2

k

= L̇1(βk) + L̇2(β) (4.28)

Here we have simplified the equations by using the functions introduced in Eq. (4.19).
Also note that L̇1 and L̇2 are the derivatives of their corresponding functions1; that is
to say:

L̇1(βk) =
n∑
i=1

(ψ1(cik + βk)− ψ1(βk))

L̇2(β) =
n∑
i=1

(
ψ1

(
K∑
k=1

βk

)
− ψ1

(
K∑
k=1

(cik + βk)
)) (4.29)

where ψ1 is the trigamma function2. For the case where k 6= j, we are easily led to:

∂2L(β)
∂βj∂βk

= L̇2(β) (4.30)

We should now replace these equations into Eqs. (4.25)-(4.27) and map the variables
according to Eq. (4.24). Let us denote the gradient of I(τ ) by the vector d, in other
words:

∇I(τ ) = d(τ ) = (d1(τ ), . . . , dK(τ ))T (4.31)

We can easily find the entries of the vector d(τ ) by applying our mapping to Eq. (4.25),
which leads us to:

dk(τ ) = ∂I(τ )
∂τk

= eτk

(
L1(βk 7→ eτk) + L2(β 7→ eτ )

)
(4.32)

where we have defined L1(βk 7→ eτk) and L2(β 7→ eτ ) such that they represent their
corresponding functions after we apply the the mappings βk 7→ eτk and β 7→ eτ , re-

1Throughout this thesis, we use Newton’s notation for differentiation and place a dot over the
function name to represent its derivative.

2The trigamma function is the derivative of the digamma function, in other words: ψ1(x) =
d2

dx2 log Γ(x) = d

dx
ψ(x).
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spectively. With this representation, we can now write the second order derivatives
as:

∂2I(τ )
∂τ 2

k

= e2τk

(
L̇1(βk 7→ eτk) + L̇2(β 7→ eτ )

)
+ dk(τ ) (4.33)

∂2I(τ )
∂τj∂τk

= eτjeτk

(
L̇2(β 7→ eτ )

)
(4.34)

In order to simplify mathematical calculations, we write the Hessian matrix as a K×K
matrix as:

HI(τ ) = Q + uuT z (4.35)

where Q is a diagonal matrix and z is constant for all parameters, each defined by:

qjk = δk(j)
(
e2τkL̇1(βk 7→ eτk) + dk(τ )

)
(4.36)

z = L̇2(β 7→ eτ ) (4.37)

u = (eτ1 , . . . , eτK )T (4.38)

To find the inverse of the Hessian matrix, as required by the Newton–Raphson iteration
in Eq. (4.21), we make use of the Sherman-Morrison theorem [Sherman & Morrison,
1950; Press et al., 2007] which extremely simplifies the necessary calculations:

Theorem 4.1. Suppose A is an invertible matrix, and v1, v2 are vectors with the con-
straint that 1 + vT2 A−1v1 6= 0. We have:

(A + v1vT2 )−1 = A−1 − A−1v1vT2 A−1

1 + vT2 A−1v1
(4.39)

By letting A = Q, v1 = u and vT2 = uT z, Eq. (4.35) will have the same functional form
required by Theorem 4.1. Furthermore, given that Q is a diagonal matrix, its inverse
is also a diagonal matrix with diagonal entries equal to 1/qkk. With all this in mind,
we can write the Newton–Raphson step for the mapped function I(τ ) as:

[HI(τ )]−1∇I(τ ) =
(
Q + uuT z

)−1
d (4.40)

= Q−1d− Q−1uuTQ−1d
1/z + uTQ−1u

(4.41)

After doing the matrix multiplications, we get to the following simplified representa-
tion for the Newton–Raphson step when updating the k’th element of the parameter
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vector τ :

τnew
k = τk −

(
[HI(τ )]−1∇I(τ )

)
k

= τk −
dk − eτkb

qkk
(4.42)

where b is equal to:

b =

K∑
i=1

die
τi

qii

1
z

+
K∑
i=1

e2τi

qii

(4.43)

The final step is to map Eqs. (4.42) and (4.43) back to the original setting, where we
were dealing with the parameters of the Dirichlet distribution β using the mapping
defined in Eq. (4.24):

log βnew
k = log βk −

βkgk − βkb′

q′kk
(4.44)

βnew
k = βk exp(−βk

gk − b′

q′kk
) (4.45)

where g was defined in Eq. (4.16), and b′, q′ij are the corresponding values for our map-
ping; i.e.:

q′jk = δk(j)
(
β2
kL̇1(βk) + βkgk(β)

)
(4.46)

z′ = L̇2(β) (4.47)

b′ =

K∑
i=1

β2
i gi
q′ii

1
z′

+
K∑
i=1

β2
i

q′ii

(4.48)

Direct calculation of each update term in Eq. (4.45) requires only simple additions
and multiplications which saves computation time in contrast to inverting the Hessian
matrix that takes O(K3) when we use the popular Gauss Jordan elimination technique
[Strang, 2003]. In the next section, we will propose a second alternative approach to cal-
culate the update term of the Newton–Raphson technique that satisfies the constraints
imposed by the Dirichlet distribution by using a barrier function instead.
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Newton–Raphson using a Logarithmic Barrier

Remember that our goal in this section is to solve an optimization problem which in-
cludes a number of inequality constraints. We can rewrite this problem in the following
form:

maximize L(β1, . . . , βK) = log p(D|β)
subject to βk > 0 k = 1, . . . , K (4.49)

In Section 4.1.2, we tried to address this problem by mapping each parameter to an
auxiliary exponential variable with no constraints, which insures the positivity of our
Dirichlet parameters. Here we will provide an alternative method to solve this problem
by introducing a logarithmic barrier [Boyd & Vandenberghe, 2004].

The essence of this method is to make the inequality constraints implicit by introducing
an indicator function for each parameter into the objective function:

maximize log p(D|β) +
K∑
k=1

I(βk) (4.50)

where the indicator function is defined in a way that it forces Eq. (4.50) to always
return positive values; i.e.:

I(βk) =

 0 βk > 0
−∞ βk ≤ 0

(4.51)

The problem with Eq. (4.51) is that it is not differentiable and thus we cannot use
it in our Newton–Raphson algorithm. However, we may circumvent this problem by
approximating the indicator function by the function:

Î(βk) = 1
t

log βk (4.52)

This approximation has the property that returns −∞ for negative values of βk. The
parameter t > 0 sets the accuracy of the approximation; as we increase its value, Î(βk)
will become a more accurate approximation for the true function I(βk).

Substituting Î(βk) for I(βk) in Eq. (4.50) returns the following approximation for our
optimization problem:

maximize Lt(β) = log p(D|β) +
K∑
k=1

1
t

log(βk) (4.53)
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which we can now apply the Newton–Raphson method as before to solve for its optimal
values. To do this, we have to write down the gradient vector and Hessian matrix of
Lt(β) by finding its first and second order derivatives. Using the same definitions of
Eq. (4.19), we find the first order derivative as:

gk(β) = ∂Lt(β)
∂βk

= L1(βk) + L2(β) + 1
tβk

(4.54)

where g is the gradient of Lt; i.e. g(β) = (g1(β), . . . , gK(β)) = ∇Lt(β). For the second
order derivatives, we obtain:

∂2Lt(β)
∂β2

k

= L̇1(βk) + L̇2(β)− 1
tβ2
k

(4.55)

∂2Lt(β)
∂βj∂βk

= L̇2(β) j 6= k (4.56)

As before, we may now write the Hessian matrix as:

HLt(β) = Q + uuT z (4.57)

where u = (1, . . . , 1)T is the unit vector, andQ is a diagonal matrix with entries equal to:

qjk = δk(j)
(
L̇1(βk)−

1
tβ2
k

)
(4.58)

z = L̇2(β) (4.59)

Once again we use Theorem 4.1 and find the inverse Hessian matrix. After completing
the computations, we get the following Newton–Raphson step for our approximate
optimization:

βnewk = βk −
(

[HLt(β)]−1∇Lt(β)
)
k

(4.60)

= βk −
(
gk − b
qkk

)
(4.61)

where b is the same for all parameters and we can thus calculate it once as:

b =

K∑
i=1

gi
qii

1
z

+
K∑
i=1

1
qii

(4.62)
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The Newton–Raphson step obtained in Eq. (4.61) is just an approximation of the orig-
inal optimization problem expressed in Eq. (4.50). In this approach, as we increase
the parameter t, Î(βk) will look more like I(βk). However, the problem with taking a
large value for t is the difficulty we face when optimizing using the Newton–Raphson
method [Boyd & Vandenberghe, 2004]. We can circumvent this problem by finding the
associated central path; where we solve a sequence of optimization problems, starting
each Newton–Raphson step at the solution of the problem for the previous value of t
[Boyd & Vandenberghe, 2004].

We conclude our remarks on estimation for finite dimensional mixture models and now
turn to their infinite dimensional variants. In the following section, we will cover some
of the fundamental approaches to estimating the hyperparameters in mixture models
with potentially infinite number of components.

4.2 Infinite Mixture Hyperparameter Estimation

Consider the infinite mixture model described in section 3.3.2. From the definition
of the model, it is obvious that the concentration parameter of the Dirichlet process,
namely γ, plays an important role in our modelling because as we mentioned earlier,
the expected number of components is directly related to the value of γ. As Doss
[2008] noted, this parameter is the most difficult to estimate or defend as a fixed value.
Escobar & West [1995] proposed a Gibbs sampling algorithm based on West [1992]
where γ is assumed to have a Gamma distribution prior Gamma(a, b) with shape a > 0
and scale b > 0. In their clever approach, they reduce the estimation to successive
draws from Beta and Gamma distributions. However, the problem now switches to
estimating reasonable values for a and b.

Some authors try to find the best values for the Gamma prior by varying a and b over
different values (see, e.g. [Kottas, 2006]), while others follow West & Escobar [1993] and
choose a and b such that the prior has a reasonable mean and a relatively low variance
[Mukherjee et al., 2007; Gelfand et al., 2005]

Here we will discuss two of the most prevalent hyperparameter estimation techniques
for the Dirichlet process mixture model; first a blend of deterministic and stochastic
approximation methods, proposed in Dorazio [2009], and second a simple Gibbs sam-
pling approximation based on the maximum likelihood estimate of γ as introduced in
McAuliffe et al. [2006].
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4.2.1 Estimation Using Prior Information

Suppose we draw a random distribution from a Dirichlet process G ∼ DP (γ,H) and
then sample n observations from our discrete distribution G; i.e. y = (y1, . . . , yn) ∼ G.
From Theorem 3.3 we know that these observations will always take K ≤ n values.
Also recall from Eq. (3.18) in Section 3.2.5 that the number of distinct values among
our observations will have the following probability distribution:

p(k|n, γ) = Γ(γ)
Γ(γ + n)s(n, k)γk

where s(n, k) are the unsigned Stirling numbers of the first kind. Dorazio [2009] elabo-
rates on this distribution and, following West [1992], assumes a Gamma(a, b) prior for
the concentration parameter γ. If we find the marginal distribution of k by integrat-
ing γ out, we obtain:

p(k|n, a, b) =
∫ ∞

0
p(k|n, γ)p(γ|a, b)dγ (4.63)

= bas(n, k)
Γ(a)

∫ ∞
0

γk+a−1exp(−bγ)Γ(γ)
Γ(γ + n) dγ (4.64)

The integral in Eq. (4.64) cannot be calculated analytically and we must resort to
numerical methods to evaluate the integral for fixed a, b and n.

Suppose we have prior information about the number of components, which we rep-
resent using the probability distribution q(k). What we are looking for is then to
make p(k|n, a, b) close to our prior distribution q(k), and one way to do this similarity
comparison is to calculate the Kullback-Leibler (KL) divergence between these two dis-
tributions. Since k is a discrete value between 1 and n, we should replace the integral
in Eq. (2.40) with a summation:

KL(q(k)||p(k|n, a, b)) =
n∑
k=1

q(k) log
(

q(k)
p(k|n, a, b)

)
(4.65)

In the absence of any prior information, a wise choice for q(k) would be to give equal
probability to all possible values; i.e. q(k) = 1/n for k = 1, . . . , n. Under this assump-
tion, The KL divergence then becomes:

KL(q(k)||p(k|n, a, b)) = − log n− 1
n

n∑
k=1

log p(k|n, a, b) (4.66)

The goal is to find the values of a and b that minimize the KL divergence, thus making
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p(k|n, a, b) as close as possible to our prior opinion of the number of distinct components.
After replacing p(k|n, a, b) in Eq. (4.66) and removing the terms that do not depend
on a or b, Eq. (4.66) amounts to maximising the following objective function:

maximize a log b− log Γ(a) + 1
n

n∑
k=1

(∫ ∞
0

γk+a−1exp(−bγ)Γ(γ)
Γ(γ + n) dγ

)
(4.67)

Calculation of the first and second terms in Eq. (4.67) is straightforward, however
numerical evaluation of the last term is computationally demanding, especially when
we are dealing with a large number of observations (as with the Dihanna corpus where
we have thousands of utterances). Dorazio [2009] calculates the optimal values of the
Gamma distribution under a uniform q(k) for sample sizes ranging from n = 5 to 50.

Now assume that we have found the optimal values a and b and have thus formed the
prior p(γ|a, b). In order to make it possible to implement a Gibbs sampling algorithm,
we should identify the conditional posterior distributions that determine our variables.
For the hyperparameter γ, the posterior density depends only on the realized number
of components, the number of observations and our prior as follows:

p(γ|k, n, a, b) ∝ p(k|n, γ)p(γ|a, b) (4.68)

where the likelihood function is given in Eq. (4.63). West [1992] has proposed a clever
approach for calculating Eq. (4.68) by identifying an auxiliary Beta-distributed vari-
able x which, after simplification, results in drawing samples from a mixture of Gamma
distributions. In other words:

γ|x, k, a, b ∼ wxGamma(a+ k, b− log(x))
+(1− wx)Gamma (a+ k − 1, b− log(x)) (4.69)

with weights wx defined by:

wx
(1− wx)

= (a+ k − 1)
n(b− log(x)) (4.70)

and the variable x drawn from:

x|γ, k ∼ Beta(γ + 1, n) (4.71)

We can now successively draw samples of our hyperparameter γ by iterating through a
series of Gibbs sampling steps. First we should draw samples from the Dirichlet process
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mixture model using an algorithm such as Algorithm 2 explained in Section 3.3.3.
Note that no matter what sampling algorithm used, the knowledge of z (the vector of
indicator variables) or Θ (the matrix of parameters of each component) is equivalent to
knowledge of k. Given k, we draw a new value of γ by first sampling an x value from
Eq. (4.71) and then sampling γ from the mixture of Gammas in Eq. (4.69) conditional
on the k and x values obtained in the current step. The entire sampling scheme is
shown in Algorithm 3.

Algorithm 3: Gibbs sampling of the DPMM concentration parameter γ
1 Choose a starting point z0 = (z0

1, z0
2, . . . , z0

n) ;
2 Generate new samples as follows
3 for j + 1 = 1 to T do
4 for i = 1 to n do
5 Sample zj+1

i from p(zi|zj(−i), yi, γ,H) as described in Algorithm 2
6 end
7 kj+1 = number of distinct values in the vector zj+1

8 Sample xj+1 ∼ Beta(γj + 1, n)
9 begin

10 γj+1 ∼ Gamma(a+ kj+1, b− log(xj+1)) with probability wj+1
x

11 γj+1 ∼ Gamma
(
a+ kj+1 − 1, b− log(xj+1)

)
with probability (1− wj+1

x )
12 end
13 end

We will conclude our discussion on this method by noting an important fact regarding
the Gamma prior on γ. In fact, we could have used any other distribution to specify our
uncertainty in the prior. However, the main reason for choosing a Gamma distribution
is that it will lead to the clever sampling scheme of West [1992].

Also note that Algorithm 3 does have its own drawbacks. As we discussed earlier,
calculating the optimal values for the Gamma distribution prior is not computationally
efficient when the number of samples is large. In the following section, we will discuss
another sampling algorithm which is based on the maximum likelihood estimate of the
hyperparameter γ.
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4.2.2 Estimation Based on MLE

In Section 3.2.5, we showed that in a Dirichlet process, the expected number of unique
observations in a sequence of n samples is given by:

E(K|n, γ) =
n∑
i=1

γ

γ + i− 1

The fundamental result that will be used in this estimation technique is Theorem 4 in
Liu [1996]. A formal statement of this theorem is given below:

Theorem 4.2. The maximum likelihood estimate (MLE) of the hyperparameter γ of a
Dirichlet process DP(γ,H) satisfies the following stationary condition:

E(K|n, γ, y1, . . . , yn) = E(K|n, γ)

=
n∑
i=1

γ

γ + i− 1 (4.72)

Liu [1996] then proceeds to give a method based on sequential imputations, although
he notes that it is possible to do approximation using the Gibbs sampler. McAuliffe
et al. [2006] propose the Gibbs sampling method that is based on Theorem 4.2. In this
approach, we repeatedly draw samples from our Dirichlet process mixture model using
a sampling scheme such as the one explained in Section 3.3.3. We then average over
the number of distinct components found in each step and equate it with Eq. (4.72) to
find the new value of γ. The algorithm is described in detail below.
McAuliffe et al. [2006] noticed that the initial configuration of γ does not affect the
final result. In fact, they have initialized γ with a plausible set of values, all of which
have converged to nearly the same value. They use this method in their model of
velocity measurements for 82 galaxies from diverse sections of the Corona Borealis
region. This method has also been used by Dorazio et al. [2008] in approximating the
hyperparameter of the DPMM which they use to model the sources of heterogeneity in
animal abundance.

4.3 Summary

This chapter covered some basic methods for estimating the hyperparameters of finite
and infinite dimensional mixture models. For the former model, previous attempts have
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Algorithm 4: Gibbs sampling of the DPMM concentration parameter γ using
MLE
1 Choose a starting point z0 = (z0

1, z0
2, . . . , z0

n) ;
2 Generate new samples as follows
3 for j + 1 = 1 to T do
4 for r + 1 = 1 to R do
5 for i = 1 to n do
6 Sample zr+1

i from p(zi|zr(−i), yi, γ
j , H) as described in Algorithm 2

7 end
8 kr+1 = number of distinct values in the vector zr+1

9 end

10 k̂ = 1
R

∑R
r=1 k

r

11 Find γj+1 that satisfies k̂ =
∑n
l=1

γj+1

γj+1 + l − 1
12 end

neglected the fact that the parameters of the Dirichlet distribution must always remain
positive, so we presented two novel approaches based on constraint optimization. The
first approach used an exponential mapping to enforce the constraints, whereas in the
second one we approximated the constraints using a logarithmic barrier function.

In the next part, we discussed two methods for estimating hyperparameters in the
Dirichlet process mixture model. The first approach was a deterministic approximation
which tried to approach the true function with a simpler and easier to evaluate function,
and the second approach was based on Gibbs sampling.

In the experiments that we will describe in the following chapter, we make use of the
estimation techniques presented here to find the appropriate parameters of our model.
As we will explain in more detail, the whole scheme is a DPMM with (potentially)
infinite number of components, where in each component the members are governed by
a Dirichlet-Multinomial distribution.



Chapter 5

Application in Automatic Dialogue
Act Classification

One of the greatest challenges in natural language processing is the recognition of the
speaker’s intention based on the utterances that he has made during the conversation.
This is done by identifying the underlying semantic units of the dialogue which are
usually coded in terms of Dialogue Acts. Manual annotation of DA’s is both time
consuming and expensive, therefore there is a huge interest in systems which are able to
automatically annotate dialogue corpora. In this section, we first present an overview
of existing automatic classification techniques, and then introduce a technique based on
the Dirichlet process mixture model explained in the previous chapters. We conclude the
section with a series of experiments on classifying the DIHANA corpus using DPMM’s
and verifying results with the actual annotations in the corpus.

5.1 Dialogue Acts; an Introduction

Dialogue Acts [Bunt, 1994; Stolcke et al., 2000; Webb, 2010] are one of the most im-
portant mechanisms for dialogue analysis. These units are very similar to the concept
of speech act introduced by Austin [1962] and further developed by Searle [1969]. In
his influential work, Austin explains how utterances are more than just descriptions of
states of affairs; that they can actually perform actions and change mental states of
the participants. For example, by saying ’bring me the newspaper’, an act is performed
and something special has been done.
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Utterance Dialogue Act
Do you have any special training? Yes-No-Question
Uh-huh Acknowledge
I think it’s great Statement-Opinion
I can imagine Appreciation

Table 5.1: Example of a typical dialogue act

Austin [1962] distinguished between three types of actions we can do by making an
utternace; a locutionary act is the act of saying something, like referring to or naming
an object. A perlocutionary act is the act performed by saying something, and an il-
locutionary act which is the act performed in saying something. In the same example
given above, just by saying ’bring me the newspaper’ we have performed a locutionary
act. Moreover, I have made another action in ordering you to do something for me (illo-
cutionary act), and if you listen to me and bring me the newspaper, I have successfully
done what I intended to do (perlocutionary act).

Searle [1969] refined Austin’s work on illocutionary acts by providing necessary and
sufficient conditions for the act to be performed. He also proposed a taxonomy of
speech acts based on the purpose of the acts and the dimensions along which they can
vary [Traum, 1999].

Whereas a full treatment of taxonomies and properties of speech acts provides insights
into the study of linguistics, mostly the practical aspects of these acts are of interest
within the computation view of linguistics. In the development of spoken dialogue
systems, it is more important to consider the conversational roles such acts can perform.
For example, if an automatic agent asks a question and the user replies with another
question, it is probably in order to clarify the original question [Webb, 2010]. These
are called Dialogue Acts [Bunt, 1994], or in some contexts Conversational Moves or
Dialogue Moves [Power, 1979], or Adjacency Pair Parts [Schegloff, 1968; Sacks et al.,
1974]. Therefore, while speech acts deal with the intentions and actions of saying
utterances, dialogue acts are annotations that give functional roles to the utterances of
a dialogue.

Table 5.1 shows what sort of linguistic structure we mean when we talk about dialogue
acts. In fact, we want to know what role each utterance plays in the dialogue; whether
it functions as a question, an acknowledgement, a confirmation, or any other functional
role. However, there is no accepted universal tagging system for labelling the utterances
of a dialogue. Therefore, one might wind up with different labels when using different
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annotation schemes on the same corpus. In section 5.1.2, we will review some of the
DA annotation schemes developed in several labelling projects and which are common
among the spoken dialogue community. But before that, we will overview some of the
most important uses of dialogue acts in machine learning.

5.1.1 Applications of Dialogue Acts

Probably the most intuitive application of DA’s are their use in dialogue systems. A
dialogue system can be defined as a system which is capable of conversing with a
human in a coherent structure. In such systems, identification of dialogue acts can help
recognize the intentions of the speaker, which in turn allows the system to make more
appropriate responses. There is a very broad literature on these types of applications.
Examples are Tamarit et al. [2011] or Prasad &Walker [2002] where each try to annotate
a different corpus for building a dialogue manager for a specific task. Fernández et al.
[2005] investigated the use of dialogue acts for understanding special linguistic units
called non-sentential utterances or NSU’s, which are fragmentary utterances that convey
a full sentential meaning. Even more general, Lendvai et al. [2003] used DA classification
techniques for shallow interpretation, which gives a more general understanding by
combining both semantic and pragmatic aspects of the utterance.

Another venue for applying dialogue acts in practice lies in the area of automatic ma-
chine translation. As noted by Fishel [2006], correctly labelled utterances can help
reduce the ambiguities when a sentence might have more than one meaning. For exam-
ple, despite its grammatical structure, an utterance such as ’would you mind opening
the window’ should not be considered as a question, but rather as a request. One typ-
ical example of such a project is the VerbMobil project [Wahlster, 1993; Jekat et al.,
1995; Wahlster, 2000]. Verbmobil is a bidirectional translation system for spontaneous
dialogues in mobile situations which can handle dialogues in either German, English
or Japanese. Other examples include Levin et al. [2003] where the authors used what
they call domain actions in order to label the utterances. These domain actions are in
fact a combination of domain independent dialogue acts followed by domain dependent
concepts. Lee et al. [1997] also proposed a dialogue model based on dialogue acts for
Korean-English machine translation.

There has also been a wide literature on the use of dialogue acts in social meaning and
its detection. DA structures have been used to annotate emotions such as annoyance
or frustration [Ang et al., 2002; Craggs & Wood, 2003; Liscombe et al., 2005]. In
another not so different context, Rosenberg & Hirschberg [2005] used a set of 26 tags
such as passionate, enthusiastic, or desperate to annotate speaker characteristics. Their
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goal is to understand how do charismatic leaders attract and retain their followers. In
more social phenomena such as speed dating, Jurafsky et al. [2009]; Ranganath et al.
[2009] used dialogue acts to label speakers as flirtatious, awkward or friendly. There
has also been efforts to tag speaker depression or stress [Pennebaker et al., 2007; Rude
et al., 2004] or personality traits such as extroversion, agreeableness or conscientiousness
[Mairesse & Walker, 2008; Mairesse et al., 2007] using dialogue act structures.

While this is not a comprehensive list of the various applications dialogue acts have
in practice, it should give a clear picture of how they could be used in different areas
of research. However, their application requires answers to two important questions.
First, how should we label the utterances in a given dialogue, are there accepted frame-
works for labelling in different domains? And second, given that manual annotation
is cumbersome, what are the approaches that we can use to automate this process?
We begin with the former question and describe some of the schemes that have been
devised for dialogue act annotation.

5.1.2 Dialogue Act Annotation Schemes

In the past few years, the use of corpus based approaches to natural language process-
ing have gained significant importance and large corpora for different applications are
being collected all over the world. However, unless we use a completely unsupervised
method for training and testing our learning algorithms, these corpora need to be an-
notated based on the task they are to perform. For this we need annotation schemes
which correspond to the task, domain, and linguistic phenomena related to that specific
project.

Dialogue act annotation schemes must make a compromise between two factors [Fishel,
2006]. First, the definitions they use for the tags must be clear enough so that it would
reduce any possible disagreement between human taggers. Second, it is preferable to
define the tags in such a way that they could be easily generalized to problems in other
domains as well. However, a balance between these two factors has proven to be quite
a difficult task.

There seems to be little consensus on a standard DA tag set for all domains. One key
factor which impedes such a consensus even in domain related corpora is the granularity
of approaches used for this task [Webb, 2010]. For example, consider the following
utterance from the DIHANA corpus:

U:I want to know the fare for the train leaving at 7:45.
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The approach used in the DIHANA project attempts to concatenate the semantic and
functional information into a single tag and assigns the label <Question-Fare-Departure
Hour> to the utterance. However, one can also adopt a higher level approach by leaving
out the semantic analysis and labelling the utterance as a simple question. Whereas
finer labels may be easier to use for the specific task they are designed for, but their
generality is limited to models related to their specific application.

Many annotation schemes have been proposed in the past few years, where each is
suitable for a specific task. Some like the Dialogue Act Mark-up in Several Layers,
DAMSL, have been defined with the goal of providing a domain independent structure
for annotating a range of dialogues for many different purposes [Core & Allen, 1997].
This corpus and its variants have been used to annotate many dialogue corpora. One
widely used variant of this scheme was designed for the Switchboard corpus and is called
SWBD-DAMSL [Jurafsky et al., 1997]. This markup language contains roughly 80%
of the original tags, with some of the DAMSL categories subdivided and some new
categories added to the original scheme.

Table 5.2 shows a basic overview of some of the most prevalent annotation schemes
available, along with the corpora they are associated with. Some of these corpora are
not widely used and are associated with a small number of dialogue projects.

The DIHANA corpus, which we have used for our experiments, is based on the Inter-
change Format (IF) defined in the C-STAR project [Fukada et al., 1998]. This scheme is
a three level representation based on domain actions, which consists of speech acts plus
domain specific concepts. The speech act captures the intention of the speaker and the
concepts capture the information focus of the utterance. Along these, there is an argu-
ment at the end of each label which represent the specific content of the utterance. For
example, consider the utterance ’a double room costs 150 dollars a night’. This phrase
consists of the speech act <give-information> with two main concepts <+price> and
<+room>. A typical dialogue act for this utterance could thus be <give-information
+ price(price=150) + room(room=double)> [Levin et al., 2000]. We will explain the
labelling scheme used for the DIHANA corpus with more detail in Section 5.3.1.

Before proceeding to the next section, it should be noted that the switchboard corpus
along with the SWBD-DAMSL annotation scheme was also a candidate for our exper-
iments. However, since the switchboard corpus is larger than DIHANA, and the range
of topics discussed in the corpus is wide and domain independent, we finally decided
to use the DIHANA corpus for this phase and leave the more challenging switchboard
corpus for future work.
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Predicted Class = C1 Predicted Class = C2

True Class = C1 TP: True Positive FN: False Negative
True Class = C2 FP: False Positive TN: True Negative

Table 5.3: A binary confusion matrix

5.2 Automatic Dialogue Act Recognition Techniques

In what follows, we will examine several successful techniques which have been applied
to automatic DA recognition. In order to compare the performance of each technique,
an evaluation metric must be adopted. However, in contrast to other areas of machine
learning, there is no public ground for evaluation in this area [Webb, 2010].

There are two commonly used methods for evaluating the results of automatic annota-
tion methods. The first obvious way is to calculate the percentage of correctly classified
utterances. This is the basic method we will use to compare performances in this sec-
tion. The second way for measuring classification error is based on the confusion matrix.
This is a K ×K matrix with its (i, j)’th entry equal to the number of instances which
belong to class Ci but are assigned to class Cj [Alpaydin, 2004]. The error rate is then
defined as:

error rate = |FN |+ |FP |
N

(5.1)

with N = |TP | + |FP | + |TN | + |TP | the total number of instances. Table 5.3 helps
better understand these concepts for the case with only two classes.

In the following sections, we will overview some of the most successful classification
techniques used for dialogue acts. These methods can be categorised in several ways;
either by the algorithm they use, the corpus on which they run their tests, or the range
of features utilised. Here we adopt the first approach and in each case, after giving an
overview of the method, summarize the results obtained on different corpora using that
specific technique. We begin our analysis with methods based on sequence models.
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5.2.1 N-gram Models

Perhaps the simplest method for predicting a DA is the use of sequence n-gram models.
In this approach, the label for the next utterance is determined by the label of the k
preceding utterances. In other words, the DA label chosen such that:

dn = argmax
d

p(d|dn−1, . . . , dn−k+1) (5.2)

However, this method requires large annotated corpora to calculate the sequence prob-
abilities. The conditional probabilities of Eq. (5.2) are then derived by counting the
number of times the sequence (dn−k+1, . . . , dn) appears in the corpus, divided by the
number of occurrences of (dn−k+1, . . . , dn−1) and repeating this for all possible n. The
value of k is normally taken to be equal to 2 or 3, larger values are only plausible when
sequences of longer dependencies are known to exist.

Nagata & Morimoto [1994] first used this method on a small dataset with a small
number of DA tags, and achieved 61.7% accuracy. They also evaluated their algorithm
for the case where each utterance could have more than one correct label. Their results
demonstrate a 77.5% accuracy using two tags and 85.1% when using three tags.

In another project, Reithinger & Maier [1995] used the same model over the VERB-
MOBIL corpus with only the top 18 DA tags (see table 5.2). By using only a single
tag, they achieved 40.25% accuracy, while two or three tags increased the accuracy rate
to 59.62% and 71.93% respectively.

Many authors, like Core & Allen [1997] found that using the n-gram model in conjunc-
tion with other approaches would yield better performances than using it alone. Most
of the methods described below use some sort of combination in their approaches.

5.2.2 Hidden Markov Models

In this approach, we assume that the utterances along with the unobserved dialogue
act labels form a finite Hidden Markov Model (HMM). An HMM is modelled as a set of
unobserved discrete state variables and a set of observations generated by each of these
states. Here we don’t observe the true states, we just have access to the observations
they produce. The parameters of this models are of two types, transition probabilities
which control the transition between the unobserved states, and the emission probabil-
ities which determine the probability of having one of the observations, given that we
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are in a specific state. These parameters are estimated from the training corpus. For
an excellent description on HMM’s, refer to Rabiner [1989].

When These models are applied to DA classification, it is assumed that the utterances
are the observed outputs, and the dialogue acts are the unobserved states that produce
these utterances. In their influential article, Stolcke et al. [2000] apply HMM models
to words in individual utterances, and report a 54.3% accuracy. However, they noted
that by combining the HMM based model with n-grams of two and three lengths, the
accuracy increases to 68.2% and 71% respectively. This shows how important dialogue
context could be in understanding the current DA, and that immediate context provides
a good deal of information [Webb, 2010].

Following their previous work, Reithinger & Klesen [1997] used the top 18 acts of
the VERBMOBIL corpus and try to model the whole dataset using the HMM model
described above. Their results show a 74.7% accuracy for the English data, and a
67.18% accuracy when applied to the German data. According to Reithinger & Klesen
[1997], this difference is mainly due to the fixed word order of English, compared to the
relatively free word order for German.

5.2.3 Bayesian Approaches

There are several Bayesian methods available which have proven to be successful in
automatic DA classification. Among all, the naive Bayes classifier is probably the
simplest Bayesian Approach. The basic idea behind this classifier is to maximize the
probability of the DA tag given a set of features. However, a strong independence
assumption among the features f1, f2, . . . fm is assumed. In other words, we are looking
for the class ĉ such that:

ĉ = argmax
c

p(c|f1, . . . , fm) (5.3)

= argmax
c

p(c)p(f1, . . . , fm|c)

= argmax
c

p(c)
∏
i

p(fi|c) (5.4)

where the last line follows from the conditional independence of the features. Based
on how we define our features, the components of Eq. (5.4) can be easily computed
from the training corpus. Grau et al. [2004] used a bag of words1 approach to form
the features of clusters. They achieved a result of 60% on the SWBD-DAMSL corpus.

1The bag of words is a simplified model where each utterance, text, etc is regarded as an unordered
collection of words, without considering any of the linguistic components of the source.
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Using a modified version of the classifier, Ivanovic [2005] neglected the DA probabilities
p(c) in Eq. (5.4) and by applying the method to only a specific subset of the corpus, he
obtained an 80% precision.

Many researchers have tried to question the strong assumption that the features are
independent, and have proposed more advanced models based on Bayesian Networks.
In this approach, the features are no longer independent from one another, instead, their
dependencies are specified by acyclic directed graphs. So, for example, f3 might depend
on f1 and f4, but not on f2. The class c is also regarded as some sort of feature which
both depends and influences the other features. As before, the conditional probabilities
are usually easy to calculate from the training corpus.

Keizer et al. [2002] used variants of this method on two different corpora. In their
first experiment, they identified three features: sentence type, subject type and sentence
punctuation. They produce a small Bayesian network and apply it to the Schisma
corpus with tags very similar to the DAMSL scheme, and get 43.5% accuracy. In a
second experiment, they create their own simple dialogue corpus annotated with the
same tag set. This time, they use 13 features related to various characteristics of the
utterances. Their final results demonstrate a 83% precision on this corpus.

5.2.4 Memory Based Learning

Memory Based Learning (MBL) is based on the intuitive hypothesis that humans han-
dle situations by comparing them with previous situations. Not only when we make
decisions, but also when we try to identify objects we make use of similarities with our
understanding of that object. In a similar manner, in MBL we store some reference
values and compare new unseen samples with these stored samples.

There are two questions we should answer when we adopt this approach. First, how
should we compare values with those in the reference set? One widely used technique is
the k-nearest neighbours (k-nn) classification, where we find the k closest values among
the reference set to the unseen sample, and assign the label based on a majority voting.
For this means, a simple yet powerful way to find the distance between pairs is to find
the Euclidean distance.

The second question we should consider is the way we store the training samples. One
common approach is to reduce them to a set of features, and save these features as
classification information. By using a Euclidean distance metric, we thus calculate the
distance between the features of an unseen sample with those in the reference set. The
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algorithm described above is also called the IB1 algorithm [Daelemans et al., 2007]
which is used in the Tilburg Memory Based Learner (TiMBL) software.

Levin et al. [2003] used the IB1 algorithm with 1 nearest neighbour in the NESPOLE
machine translation project. Their approach assumes utterances are bags of words, but
instead of word features, they use binary features indicating the presence or absence
of labels from grammars. The result is a 69.82% accuracy. Lendvai et al. [2003] also
used the TiMBL system on a corpus of 3,738 interactions with a Dutch train time table
system, annotated with 94 different DA’s, and achieved 73.5% precision. MBL has also
been applied to the domain independent Switchboard corpus, using a 3-nn classification
algorithm, and the reported percentage of correct classifications was 72.32% [Rotaru,
2002].

5.2.5 Decision Trees

A Decision tree has a tree structure where at each node, a condition is evaluated. The
branch with which the condition holds specifies the sub-tree we should traverse. So by
beginning from the root, we traverse through the tree based on the conditions on each
arc. In our context, the input to each decision tree is an utterance, and each of the
leaves of the graph specify a DA tag.

Compared to other methods, this approach has the basic advantage that it is much easier
to understand by human analysts. They are also a popular method of classification
in the whole machine learning literature due to their great performance. However,
constructing a Decision tree could be difficult for large problems.

Using the same features as described previously, Levin et al. [2003] applied a decision
tree to the same corpus and obtained 70.41% accuracy, which is almost the same per-
formance as the MLB classifier. Verbree et al. [2006] also used a variant of the decision
trees and apply them to three corpora, the ICSI-MRDA corpus, the Switchboard cor-
pus and initial work on the AMI corpus. The set of features they used contained five
categories; the presence or absence of the question mark (?) and the word or, the length
of each segment, bi-gram of the previous two labels, and the presence of bi-grams, tri-
grams and quadri-grams in utterances of both words and part of speech tags. With
these features, they obtain a 89.27% precision on the ICSI-MRDA corpus which is the
best result reported on this corpus, 65.68% on the Switchboard corpus and 59.76 on
the AMI corpus.
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5.2.6 Multilayer Perceptron

the Multilayer Perceptron is the most widely used neural network which is based on the
biological working of the neurons inside human brains. These constructs are composed
of computational units like neurons with input and output connections. Each connection
has a weight which means that the input is multiplied by this number. The overall model
consists of an input layer with one neuron per feature, a number of hidden layers, and
an output layer which returns the vector of results.

In this model, each neuron has a nonlinear activation function which finds the weight of
the output connections based on the input signals. This function is modeled in several
ways, but must always be normalizable and differentiable [Alpaydin, 2004]. However,
the most frequently used activation function is a sigmoid1.

Sanchis & Castro [2002] used multilayer perceptrons on a tightly defined domain. Their
corpus consisted of 215 Spanish dialogues in the train time table domain, annotated
with 11 DA tags. They achieved a 92.54% of classification accuracy using transcribed
dialogues.

Wright [1998] compared a range of classification algorithms on the MAPTASK corpus
and get almost similar performance in all of them. By combining the algorithms with
a quadri-gram DA progression, their HMM algorithm achieved 64% accuracy, their
decision tree achieves 63% and their multilayer perceptron achieved a 62% precision.
Levin et al. [2003] also applied the multilayer perceptron to the same corpus they used
for the decision tree algorithm and the MLB, and found the perceptron to produce the
best result among all algorithms, with a 71.52% accuracy.

We conclude our discussion on dialogue act recognition techniques with an important
remark. In all the projects mentioned above, care must be taken when comparing re-
sults, even when the projects are performed on the same corpus. As noted by [Webb,
2010], there are several issues that must become clear before any comparison is carried
out. These include information about the tag set used and the tags left out, the prepro-
cessing of the corpus, the use of orthographic information, or even information about
the splits used for training and testing purposes. However, they do show interesting
facts about which algorithms are more suited to which problems.

What we presented here was just a brief overview of the previous works in automatic
1A sigmoid function is a function that produces a sigmoid curve, i.e. has a ’S’ like shape. When

detailed description is not present, it normally refers to the logistic function defined by 1
1 + e−t
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DA classification and is far from a complete discussion in the domain. Interested readers
may refer to [Webb, 2010] or Fishel [2006] for more details on these approaches. In the
remainder of this chapter, we will introduce a new approach to DA classification based
on the concept of Dirichlet process explained in the previous chapters.

5.3 Experimental Results

In all of the methods presented in Section 5.2, we start with a predefined number of
dialogue acts and after the training phase is over, the algorithm tries to assign utterances
to one of these labels. The problem with this approach is that we must know how many
dialogue acts we are going to have before running the algorithm; in other words, we
must have previously labelled the corpus in order to be able to train our algorithm.
The DA recognition algorithms lack to ability to learn the number of distinct classes
themselves.

In an attempt to overcome this subtlety, we try to utilise the concept of the Dirichlet
process we fully explained in Chapter 3. Remember we showed that a great char-
acteristic of nonparametric Bayesian approaches was in their flexibility; that through
the Chinese Restaurant metaphor, we can let the data to speak for themselves and
determine how many clusters are necessary for classifying them. We begin with an
overview of the DIHANA corpus that we used for our algorithm, along with the an-
notation scheme associated to the corpus, and present our experimental results in the
subsequent sections.

5.3.1 The DIHANA corpus

The Spanish Corpus DIHANA [Benedı et al., 2006] is composed of 900 dialogues about
railway information such as trip timetables and prices for different destinations in Spain.
The scenarios where obtained from 225 users (153 males and 72 females). The acquisi-
tion was performed using the Wizard of Oz strategy [Fraser & Gilbert, 1991]. In this
strategy, the user believes that he is interacting with the real system while a human
agent is simulating the behaviour of the system.

The acquisition process had 5.3 hours of speech signal which resulted in 6,278 user
turns and 9,129 system turns, with an average of 7 user turns and 10 system turns
per dialogue. The vocabulary size is 839 words with 9 words per user turn and 20 for
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The DIHANA Corpus
Dialogues 900
Speakers 225
User turns 6,278
System turns 9,129
Words 48,243
Vocabulary size 839

Table 5.4: Statistics from the DIHANA corpus

system turns. The main characteristics of the corpus are shown in Table 5.4.

As we mentioned in Section 5.1.2, this corpus is based on the three level Interchange
Format (IF) defined in the C-STAR project. In the DIHANA project, the first layer
represents the intention of the segment, which corresponds to a generic description of
the dialogue act. More precise semantic information are described in the second and
third layer. The second level contains the repository of information implicit in the
segment, whereas the third level store the specific data that appear in the segment
Alcácer et al. [2005]. Table 5.5 shows a sample of an annotated dialogue (translated
into English) from the corpus.

Using this three level labelling scheme and making the distinction between user and
system labels, the annotation task resulted in 248 different dialogue act labels (153 for
user turns and 95 for system turns). Since the third level contains very detailed infor-
mation, an alternative labelling scheme using only the first two levels is also considered
in experiments [Tamarit et al., 2011]. This two level scheme, which we have adopted
for our experiments, contains 72 different labels (45 for user and 27 for system). Also,
by considering only the first level, which contains general information regarding the
dialogue act, there is a total of 16 labels (7 for user and 9 for system).

The corpus was also preprocessed to reduce complexity. In this case, all words were
transformed to lower case, punctuation marks where separated from words, and a pro-
cess of name-entity recognition was applied so as to categorise entities such as town
names, dates,and hours.
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Segment Translated Utterances
Level 1 Level 2 Level 3

S1 Welcome to the railway information system. How may I help you?
Opening Nil Nil

U1 I want to know the departure hours from Valencia
Question Departure-Hour Origin

U2 to Madrid
Question Departure-Hour Destination

U3 arriving on May 15th, 2004.
Question Departure-Hour Day

S2 Do you want to leave on Saturday, May 15th 2004?
Confirmation Day Day

U4 Yes.
Acceptance Day Nil

S3
Consulting times for trains from Valencia to Madrid on Saturday,
May 15th 2004.
Confirmation Departure-Hour Destination, Day, Origin

S4 Wait a moment please.
Waiting Nil Nil

S5
There are several trains. The first one leaves at 7:45 and arrives
at 11:14, and the last one leaves at 18:45 and arrives at 22:18.

Answer Departure-Hour Arrival-Hour, Departure-Hour,
Order-Number, Number-Trains

S6 Do you need anything else?
Consult Nil Nil

U5 Yes, I want to know the fare for the train leaving at 7:45.
Question Fare Departure-Hour

S7 The train in the tourist class costs 35.50 euros.
Answer Fare Class, Fare

S8 Do you need anything else?
Consult Nil Nil

U6 No, thank you.
Closing Nil Nil

S9 Thank you for using this service. Have a nice day.
Closing Nil Nil

Table 5.5: A sample dialogue from the DIHANA corpus in English.
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5.3.2 Methodology

Our goal in the following experiments is to apply the Dirichlet process mixture model
to the task of automatic classification of dialogue acts in the DIHANA corpus. The two
level scheme of DA labels was chosen for analysis of results, so there were 27 system DA’s
and 45 user dialogue acts. We consider utterances as bags of words (see Section 5.2.3),
so syntactic features are not considered here. Classification is based on word counts
in each utterance, therefore utterances with similar words will in general appear in the
same cluster.

According to what we discussed in the previous sections, a Dirichlet process mixture
model can be described as an infinite dimensional counterpart of a finite mixture model.
As with all nonparametric models, in the DPMM we can have a potentially infinite
number of clusters. Since we are working with word histograms, a convenient choice
for the words appearing in each cluster would be the Dirichlet-Multinomial distribution
explained in Section 4.1.1. In other words, the appearance of words in utterances that
belong to the same cluster is governed by a Multinomial distribution with a Dirichlet
prior. A small example of utterance classification using (finite) mixture models was
presented in Section 3.3.1.

When using the DPMM, there are two hyperparameters which greatly affect the num-
ber of clusters that are obtained at the end. The first one is the γ parameter of the
Dirichlet process. As we saw in Section 3.2.5, the expected number of clusters is directly
dependent on the value of this parameter. So small changes in γ will affect the number
of clusters, which will in turn influence the error rate of the whole approach. However,
as we will demonstrate later, by using the Gibbs sampling algorithm described in Al-
gorithm 2, the initial value chosen for γ had little effect on the converged value of this
hyperparameter.

The second important hyperparameter is the parameter vector of the Dirichlet prior in
the Dirichlet-Multinomial distribution. As we explained in Section 2.3.3, this parameter
controls how concentrated the distribution is around its expected value. Choosing 1
as its value results in all sets of probabilities in that simplex being equally likely (the
distribution over any set of probabilities is uniform). On the other hand, choosing
a large value for the parameter will end up in uniform distributions having higher
probabilities. For small values, one would more probably wind up with distributions
concentrated on one of their components (highly peaked at corners of the simplex).
Therefore, the value chosen for this parameter will affect how utterances are clustered
together, and thus how many clusters we obtain overall.



Chapter 5. Application in Automatic Dialogue Act Classification 92

Whereas the initial value for γ parameter of the Dirichlet process seemed to have
little effect on the final results, different values of the Dirichlet-Multinomial parameter
resulted in different number of clusters. So we divided the corpus into training and
test sets. Since the corpus was large, half of the corpus was set aside for training and
the rest was used for validation purposes. During the training phase of the project,
we trained our classifier using various values for the concentration parameter of the
Dirichlet-Multinomial distribution. The parameter with the lowest classification error
was chosen for the validation phase of the project.

We used Algorithm 4 to draw samples from the DPMM and to estimate values of the γ
hyperparameter of the model. the algorithm starts by randomly assigning utterances
to an initial number of clusters. As we will demonstrate later, this initial value does
not affect our final results. At each step, a single utterance is removed from the cluster
it has been assigned to, and is re-assigned to one of the clusters based on the words
appearing in each cluster. Since we are using a Dirichlet-Multinomial distribution for
word occurrences in clusters, we should apply the corresponding predictive distribution
of Eq. (4.13) as the posterior fp in the algorithm. This process was repeated until
convergence, where the convergence criterion was met when utterances moving between
clusters did not change the total number of components for 5 consecutive iterations.

After every 15 scans of the Gibbs sampler, we updated the Dirichlet-Multinomial pa-
rameters of each cluster so as they would further resemble the data points they contain.
This was done using our Newton-Raphson technique with an exponential mapping de-
scribed in Section 4.1.2. So by using the Newton-Raphson steps defined in Eq. (4.45),
we found values of the hyperparameter which made the observations in that cluster the
most likely possible.

At the end of each iteration, we also had to update the γ parameter of the DP for the
next run of the sampler. Based on the final step of 4, we ran 20 different trials of the
sampler, and at the end of each run, recorded the number of clusters found. Solving
Eq. (4.72) by averaging over these values results in a new value of γ which we used for
the next iteration of the Gibbs sampler.

The whole iteration scheme presented above was repeated 100 times, even though con-
vergence was reached much earlier. We used two programming languages for coding our
experiments. The first part, which involved reading text data and extracting informa-
tion from the dialogues, was done using PYTHON due to its simplicity in file I/O and
easy to use regular expressions. These data where then imported into MATLAB where
all the algorithms for working on the utterances were implemented in this environment.
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Before going on to discuss our results, it should be mentioned that a similar work
using the Dirichlet process has been already applied to the DIHANA corpus by Crook
et al. [2009]; however, in their approach it is not specified what hyperparameters they
have chosen for the model, and how they have obtained these values. As mentioned
previously, the final results are highly sensitive to the initial values chosen. Therefore,
it is not clear how ’unsupervised’ their approach can be unless they explain the model
in more detail. Moreover, they apply their algorithm on all dialogues together, instead
of separating user and system utterances. As we will show below, classification of
system utterances normally yields higher accuracy than user utterances because they
are generated from a well defined pattern. So by mixing user and system utterances,
the results may not actually tell us how well the algorithm performs on user utterances,
which is more of a challenge in DA classification approaches.

In what follows, we will discuss the main results that we obtained during our experi-
ments. Apart from the two error criteria that we discussed in Section 5.2 (the percent-
age of correctly classified utterances, and the confusion matrix), following Crook et al.
[2009] two other evaluation criteria were also introduced. The intra-cluster similarity
measures the similarity between utterances that belong to the same cluster. This is
done by averaging over the Euclidean distance between every pair of utterances in clus-
ter k, or in formal terms:

S
′

k = 1
2nk

∑
|ui − uj| (5.5)

where nk represents the number of utterances in cluster k, and ui is the vectorial
representation of the i’th utterance, signifying the number of times each word has
appeared in that utterance. Not only should we seek to make utterances in each cluster
more similar to each other, but it is also important to increase the inter-cluster similarity
so that clusters are as far apart as possible. This metric is calculated by averaging over
the Euclidean distance between the centres of every pair of clusters:

S
′′

k = 1
2K

∑
|Ci − Cj| (5.6)

where Ci and Cj are centres of two typical clusters and K is the total number of clusters
found by the algorithm. These criteria are evaluated for both training and validation
phases as we will describe below.
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Figure 5.1: Initialization of the number of clusters. As demonstrated here, this value
had no significant effect on the final converged value.

5.3.3 Results of Training

As mentioned before, there are three parameters that we should initialize for our algo-
rithm to work. These were the number of clusters to start off with, the Dirichlet process
parameter and the Dirichlet-Multinomial parameters of each cluster. As for the last
one, we ran the algorithm for 200 different values of the cluster parameter between 0
and 10, and tried to find the parameter with the lowest error rate, highest inter-cluster
similarity and lowest intra-cluster similarity overall. With these criteria in mind, the
best parameters were found to be 34/190 or 0.179 for system utterances and 40/705 or
0.057 for user utterances.

Initial Number of Clusters

The initial number of clusters which we fed into our algorithms seemed to have no
significant effect on the final converged value. We started with 5, 25, 50 and 100
clusters holding all other parameters fixed and, as can be seen in Figure 5.1, they all
converged to the same number of clusters after very few steps.
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Figure 5.2: Initialization of the Dirichlet process parameter γ. As demonstrated here,
this value had no significant effect on the final converged value either.

Initial Value of the DP Parameter

The second parameter which we had to initialize was the Dirichlet process parameter.
Like the previous case, no significant impact was observed when given different starting
values. Figure 5.2 shows results of 4 executions starting off with γ = 1, 5, 10 and 20.
In all cases, the algorithm converged to the same γ value after a relatively few number
of iterations.

5.3.4 Final Results

With the initial values found in the training phase, we then started the algorithm on
the test set and iterated over the Gibbs sampler for 100 iterations. Although some
fluctuations can be observed among the values obtained at different iterations, but
they all seem to be in a specific range, which means that the algorithm has a high rate
of convergence. At each step, we recorded the value of the Dirichlet process parameter,
the error rates, similarity rates and the number of clusters found. The results along
with their corresponding graphs are discussed below.
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Dirichlet Process Parameter

We started the DP parameter γ with 10, even though we could have initialized it with
any other number due to our discussion in Section 5.3.3. The values obtained were all
very close, and mostly between 2 and 4. However, by observing Figures 5.3 and 5.4,
it can be seen that after around 65 iterations over user utterances and 70 iterations
over system utterances, the value of γ starts to fluctuate less than the initial steps. So
by averaging over γ after this burn in period, we find γ = 9.058 for the user set and
γ = 2.675 for the system set.

Number of Clusters

As we discussed in Section 3.2.5, the γ parameter of the DP directly affects the number
of clusters obtained. Once again, the initial value assigned to this parameter had been
shown to have no effect on the final converged value. Figures 5.5 and 5.6 show how the
number of clusters change over time for system and user utterances. It can be observed
that with γ starting to converge, the variation in the number of clusters gets lower. So
the converged number of clusters was 25.48% for system utterances and 49.86% for user
utterances.

By only considering the number of clusters, the results obtained here are very close to
the actual numbers. In fact, based on the two level annotation scheme of the DIHANA
corpus, there were 27 and 45 dialogue acts for system and user utterances, respectively.
However, the number of clusters is not the only factor which demonstrates the perfor-
mance of the algorithm. The next set of results show different error criteria evaluated
for each of the obtained clusters.

Performance Analysis

After finding the different number of clusters and assigning utterances to each one of
them, we labelled each cluster with the DA tag which had the largest proportion of
utterances within it. This is important for the next steps where we want to evaluate
the performance of the approach.

Performance analysis was based on four different evaluation criteria described at the
beginning of this section. The first one was the calculation of the error rate based on
the confusion matrix as formulated in Eq. (5.1). In our context, the false negatives for
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the i’th cluster were all utterances that should have been in that cluster, but ended up
in some other cluster with another DA label. On the other hand, the false positives
were all instances that we assigned to the i’th cluster while they actually had a different
DA label than the one assigned to that cluster. Figures 5.7 and 5.8 show the mean error
rate of the clusters obtained in each iteration of the Gibbs sampler. Accordingly, the
error rate after convergence had an average of 0.013 for system utterances and 0.015
for user utterances.

A more intuitive criterion for analysing results is the percentage of correctly classified
utterances in each cluster. Figures 5.9 and 5.9 demonstrate how well our approach
performed when clustering user and system utterances. As with the previous case, for
each iteration we plot the average of classification accuracy in all clusters. After the
burn in period, the average classification precision turned out to be 83.85% for system
utterances and 62.89% for user utterances.

Last but not least, intra-cluster and inter-cluster similarity measures as explained in
Eqs. (5.5) and (5.6) were calculated. For system and user utterances, the average intra-
cluster similarity was 114.833 and 102.365 and the average inter-cluster similarity was
68.556 and 70.547 respectively. Remember that a good classification algorithm is one
which besides low error rates, has low intra-cluster similarity (utterances in each cluster
are closer to each other) and high inter-cluster similarity (clusters are as far apart as
possible). Figures 5.11-5.14 show the results of our similarity analysis for both type of
utterances.

It thus follows that the Dirichlet process mixture model was able to classify dialogue
acts in the DIHANA corpus with acceptable precision. The main reason that the algo-
rithm performed so well in classifying system utterances, compared to user utterances,
is that in the latter case utterances come from different sources, whereas system ut-
terances are mostly predefined and have many similar structures within them. Also,
updating the cluster parameters after a predetermined number of steps makes them
more specialized, in the sense that they will further reflect the properties of utterances
they hold. This results in utterances wandering less among clusters, an increase in
inter-cluster similarity and decrease in the intra-cluster similarity measures.
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5.4 Conclusion

In this section, we discussed the problem of dialogue act classification in spoken dialogue
systems. We reviewed some of the most important approaches used for automatic DA
classification, along with results of applying them to different dialogue corpora. We
next used the concepts presented in the previous chapters to analyse the performance
of nonparametric methods in this area. We tried to model dialogue utterances with
Dirichlet process mixture models by treating utterances as bag of words.

Our results show that the DPMM can have acceptable results when applied to dialogue
act classification. The model was able to correctly classify 63% of the user utterances
and 84% of system utterances. This difference in performance is quite understand-
able, because classifying user utterances is more of a challenge because they come from
different sources each with different language competencies. However, with the appro-
priate hyperparameters, the DPMM was almost capable of finding the correct number
of two-level DA classes necessary. Even though the results sound promising, the DI-
HANA corpus which we used for our experiments is restricted to a specific task, it is
still unclear whether or not the method could be applied to more general corpora.
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Figure 5.3: The value of the γ parameter of the Dirichlet process in different iterations
of the Gibbs sampler over system utterances.
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Figure 5.4: The value of the γ parameter of the Dirichlet process in different iterations
of the Gibbs sampler over user utterances.
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Figure 5.5: Number of clusters obtained in each iteration of the Gibbs sampler over
system utterances.

0 10 20 30 40 50 60 70 80 90 100
30

35

40

45

50

55

60

65

70

75

80

Iteration Number

N
um

be
r 

of
 C

lu
st

er
s

Figure 5.6: Number of clusters obtained in each iteration of the Gibbs sampler over
user utterances.
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Figure 5.7: Classification error based on the confusion matrix for system utterances.
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Figure 5.8: Classification error based on the confusion matrix for user utterances.
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Figure 5.9: Classification accuracy for system utterances in each iteration of the Gibbs
sampler.
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Figure 5.10: Classification accuracy for user utterances in each iteration of the Gibbs
sampler.
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Figure 5.11: Intra-cluster similarity of clusters of system utterances during the evolution
of the Gibbs sampler.
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Figure 5.12: Intra-cluster similarity of clusters of user utterances during the evolution
of the Gibbs sampler.
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Figure 5.13: Inter-cluster similarity between clusters of system utterances at each step
of the Gibbs sampler.
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Figure 5.14: Inter-cluster similarity between clusters of user utterances at each step of
the Gibbs sampler.



Chapter 6

Conclusion and Future Work

This thesis considers the application on nonparametric Bayesian methods to the prob-
lem of automatic dialogue act classification. We discussed the Dirichlet process mixture
model, along with methods for sampling and estimating its key hyperparameters in Chap-
ters 3 and 4. In this final chapter, we will discuss the main contributions and results
of this work, along with directions for future research.

Automatic dialogue act classification with high precision is still an open problem in
spoken dialogue systems. It has turned into a classic challenge in classification, where
the goal is to extract important features from a set of manually annotated dialogues, in
order to use them for predicting the presence of particular DA’s in future utterances.
As we discussed in Chapter 5, several approaches have been already taken for correctly
predicting the DA’s in various corpora with different annotation schemes. However, so
far no approach has been ideal or fully robust.

Conceptually, the contributions of this thesis can be broken into two main parts. The
first part, which consists of Chapter 4, discussed two new approaches for estimating hy-
perparamters in the Dirichlet-Multinomial distribution. This distribution is the building
block of all models that deal with observations drawn from a Multinomial distribution
(such as word counts in each DA component), where the Multinomial proportions are
thought to have been drawn from its conjugate prior, the Dirichlet distribution. There-
fore, not only can we use them for finite mixture models, but we can also apply them
to their infinite dimensional counterpart, the Dirichlet process mixture model.

Hyperparameter estimation in the Dirichlet-Multinomial distribution is not a new prob-
lem in statistical computations; in fact, there are already several methods available for
this task. Nevertheless, as noted by previous authors, they all seem to have over-
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looked one important implementation constraint; that the parameters in a Dirichlet
distribution must always remain positive. The two new methods that we introduced
overcome this limitation by enforcing the constraints into the Newton-Raphson opti-
mization technique. In the first approach, we used an exponential mapping to map
each parameter into an exponential parameter where the domain is the set of all real
numbers, but the output range is always positive. So the problem is transformed into
a regular optimization problem with no constraints.

In the second method, we tackled the problem from another angle by using a logarith-
mic barrier function which forces the maximization problem to always return positive
values. Simplified Newton-Raphson steps were also provided for approximate opti-
mization using this technique. However, both of the methods need to be implemented
and compared with other existing algorithms in terms of performance and convergence
speed.

The second set of contributions are the application of the Dirichlet process mixture
model to the problem of automatic DA classification in the DIHANA corpus. In this
model, the number of clusters is governed by the Dirichlet process, which allows for
a (potentially) infinite number of clusters. Within each cluster, the utterances are as-
sumed to have a Dirichlet-Multinomial distribution, so utterances with similar word
patterns will normally fall into the same DA cluster. The parameters of all components
where the same at first, but after a few iterations, were updated to further resemble
the utterances present in them. This updating was done using our exponential map-
ping estimation technique. The results were quite remarkable; the number of clusters
obtained was very close to the true number, with 25 clusters for system utterances and
50 clusters for user utterances, whereas the real values were 27 and 45 respectively.

The classification precision was also quite acceptable. The algorithm was capable of
correctly classifying 63% of user utterances and 84% of system utterances. This shows
that even without considering syntactic features of utterances, word counts alone can
largely contribute to the classification of dialogue acts using the Dirichlet process mix-
ture models.

However, this is just a first step in the application of nonparametric Bayesian methods
to the challenging problem of DA classification. For the hyperparameter estimation
techniques presented in this work, it is necessary to implement them and compare
them to other estimation techniques used in the literature as to see how they compare
in terms of speed and accuracy. Also, further research needs to be done regarding the t
variable in the logarithmic barrier approach. As we mentioned in Section 4.1.2, small
values of this variable will result in poor approximations, whereas larger values increase
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the difficulty when optimizing using the Newton-Raphson method.

Our experiments considered utterances as simple bags of words, neglecting all syntactic
features a spoken utterance may have. One can alternatively use other features to
increase classification accuracy. N-grams of words can further help classify utterances
into relative DA clusters. These n-grams can be obtained from available sources or even
from the corpus itself by considering different sequences of words in that corpus. This
second approach has the benefit of generating n-grams related to the task we are dealing
with in whatever language the corpus is compiled. DA n-grams can also be extracted
from the annotated corpus, so there would be a more logical connection between the DA
we are trying to predict and the previous DA’s in the progression of the conversation.

Last but not least, our experiments were restricted to a task oriented corpus with dia-
logues concentrating on train service inquiries. Further experiments need to be done in
order to evaluate the performance of the DPMM on corpora with larger vocabularies
and more general topics like the Switchboard corpus. one might even wonder how well
could this model perform on new communication mediums such as twitter conversa-
tions. The collection of 1.3 million twitter conversations recently made available by
Microsoft Research, provides a new challenge for dialogue act labelling in a completely
unsupervised open domain.
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