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ning problems. Although this review is slightly outdated, it presents the basics of
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A thorough review of the different types of computational methods available for
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This article presents the Immune Epitope database (IEDB) and the related analysis
tools. The IEDB is currently one of the most well-maintained source of MHC-peptide
epitope data. It contains over 200000 quantitative measurements of the binding affi-
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